Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
General linear model
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Comparison to generalized linear model == The general linear model and the [[generalized linear model]] (GLM)<ref name=":0">{{Cite book |last1=McCullagh |first1=P. |author1-link=Peter McCullagh |last2=Nelder |first2=J. A. |author2-link=John Nelder |date=January 1, 1983 |chapter=An outline of generalized linear models |title=Generalized Linear Models |pages=21β47 |publisher=Springer US |isbn=9780412317606 |doi=10.1007/978-1-4899-3242-6_2 |doi-broken-date=13 December 2024}}</ref><ref>Fox, J. (2015). ''Applied regression analysis and generalized linear models''. Sage Publications.</ref> are two commonly used families of [[Statistics|statistical methods]] to relate some number of continuous and/or categorical [[Dependent and independent variables|predictors]] to a single [[Dependent and independent variables|outcome variable]]. The main difference between the two approaches is that the general linear model strictly assumes that the [[Errors and residuals|residuals]] will follow a [[Conditional probability distribution|conditionally]] [[normal distribution]],<ref name=":1">{{cite report |last1=Cohen |first1=J. |last2=Cohen |first2=P. |last3=West |first3=S. G. |last4=Aiken |first4=L. S. |author4-link=Leona S. Aiken |date=2003 |title=Applied multiple regression/correlation analysis for the behavioral sciences}}</ref> while the GLM loosens this assumption and allows for a variety of other [[Distribution (mathematics)|distributions]] from the [[exponential family]] for the residuals.<ref name=":0"/> The general linear model is a special case of the GLM in which the distribution of the residuals follow a conditionally normal distribution. The distribution of the residuals largely depends on the type and distribution of the outcome variable; different types of outcome variables lead to the variety of models within the GLM family. Commonly used models in the GLM family include [[Logistic regression|binary logistic regression]]<ref>Hosmer Jr, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). ''Applied logistic regression'' (Vol. 398). John Wiley & Sons.</ref> for binary or dichotomous outcomes, [[Poisson regression]]<ref>{{cite journal |last1=Gardner |first1=W. |last2=Mulvey |first2=E. P. |last3=Shaw |first3=E. C. |date=1995 |title=Regression analyses of counts and rates: Poisson, overdispersed Poisson, and negative binomial models |journal=Psychological Bulletin |volume=118 |issue=3 |pages=392β404 |doi=10.1037/0033-2909.118.3.392 |pmid=7501743}}</ref> for count outcomes, and [[linear regression]] for continuous, normally distributed outcomes. This means that GLM may be spoken of as a general family of statistical models or as specific models for specific outcome types. {| class="wikitable" ! !General linear model ![[Generalized linear model]] |- |Typical estimation method |[[Least squares]], [[best linear unbiased prediction]] |[[Maximum likelihood]] or [[Bayesian probability|Bayesian]] |- |Examples |[[ANOVA]], [[ANCOVA]], [[linear regression]] |[[linear regression]], [[logistic regression]], [[Poisson regression]], gamma regression,<ref name=":02">{{cite book |last1=McCullagh |first1=Peter |author1-link=Peter McCullagh |last2=Nelder |first2=John |author2-link=John Nelder |year=1989 |title=Generalized Linear Models |edition=2nd |publisher=Boca Raton: Chapman and Hall/CRC |isbn=978-0-412-31760-6 |ref=McCullagh1989}}</ref> general linear model |- |Extensions and related methods |[[Multivariate analysis of variance|MANOVA]], [[Multivariate analysis of covariance|MANCOVA]], [[Mixed model|linear mixed model]] |[[generalized linear mixed model]] (GLMM), [[Generalized estimating equation|generalized estimating equations]] (GEE) |- |[[R (programming language)|R]] package and function |[https://stat.ethz.ch/R-manual/R-devel/library/stats/html/lm.html lm()] in stats package (base R) |[https://stat.ethz.ch/R-manual/R-devel/library/stats/html/glm.html glm()] in stats package (base R) manova, |- |[[MATLAB]] function |mvregress() |glmfit() |- |[[SAS (software)|SAS]] procedures |[https://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/viewer.htm#glm_toc.htm PROC GLM], [https://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/viewer.htm#reg_toc.htm PROC REG] |[https://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/viewer.htm#genmod_toc.htm PROC GENMOD], [https://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/viewer.htm#logistic_toc.htm PROC LOGISTIC] (for binary & ordered or unordered categorical outcomes) |- |[[Stata]] command |regress |glm |- |[[SPSS]] command |[https://stats.idre.ucla.edu/spss/output/regression-analysis/ regression], [https://stats.idre.ucla.edu/spss/library/spss-librarymanova-and-glm-2/ glm] |genlin, logistic |- |[[Wolfram Language]] & [[Mathematica]] function |LinearModelFit[]<ref>[http://reference.wolfram.com/language/ref/LinearModelFit.html LinearModelFit], Wolfram Language Documentation Center.</ref> |GeneralizedLinearModelFit[]<ref>[http://reference.wolfram.com/language/ref/GeneralizedLinearModelFit.html GeneralizedLinearModelFit], Wolfram Language Documentation Center.</ref> |- |[[EViews]] command |ls<ref>[http://www.eviews.com/help/helpintro.html#page/content%2Fcommandcmd-ls.html ls], EViews Help.</ref> |glm<ref>[http://www.eviews.com/help/helpintro.html#page/content%2Fcommandcmd-glm.html glm], EViews Help.</ref> |- |statsmodels Python Package |[https://www.statsmodels.org/dev/user-guide.html#regression-and-linear-models regression-and-linear-models] |[https://www.statsmodels.org/dev/glm.html GLM] |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)