Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Geometric standard deviation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Derivation== If the geometric mean is <math display="block">\mu_\mathrm{g} = \sqrt[n]{A_1 A_2 \cdots A_n}</math> then taking the [[natural logarithm]] of both sides results in <math display="block">\ln \mu_\mathrm{g} = {1 \over n} \ln (A_1 A_2 \cdots A_n).</math> The logarithm of a product is a sum of logarithms (assuming <math display="inline">A_i</math> is positive for all {{nowrap|<math display="inline">i</math>),}} so <math display="block">\ln \mu_\mathrm{g} = {1 \over n} \left[ \ln A_1 + \ln A_2 + \cdots + \ln A_n \right].</math> It can now be seen that <math>\ln \mu_\mathrm{g}</math> is the [[arithmetic mean]] of the set {{nowrap|<math>\{ \ln A_1, \ln A_2, \dots , \ln A_n \}</math>,}} therefore the arithmetic standard deviation of this same set should be <math display="block">\ln \sigma_\mathrm{g} = \sqrt{ {1\over n} \sum_{i=1}^n (\ln A_i - \ln \mu_\mathrm{g})^2 }\,.</math> This simplifies to <math display="block"> \sigma_\mathrm{g} = \exp \sqrt{ {1\over n}\sum_{i=1}^n \left( \ln {A_i \over \mu_\mathrm{g}} \right)^2 }\,.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)