Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Gudermannian function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Complex values == [[File:Gudermannian conformal map.png|thumb|right|upright=1.5|The Gudermannian function {{math|''z'' β¦ gd ''z''}} is a conformal map from an infinite strip to an infinite strip. It can be broken into two parts: a map {{math|''z'' β¦ tanh {{sfrac|1|2}}''z''}} from one infinite strip to the complex unit disk and a map {{math|''ΞΆ'' β¦ 2 arctan ''ΞΆ''}} from the disk to the other infinite strip.]] As a [[Complex analysis|function of a complex variable]], <math display=inline>z \mapsto w = \operatorname{gd} z</math> [[conformal map|conformally maps]] the infinite strip <math display=inline>\left|\operatorname{Im}z\right| \leq \tfrac12\pi</math> to the infinite strip <math display=inline>\left|\operatorname{Re}w\right| \leq \tfrac12\pi,</math> while <math display=inline>w \mapsto z = \operatorname{gd}^{-1} w</math> conformally maps the infinite strip <math display=inline>\left|\operatorname{Re}w\right| \leq \tfrac12\pi</math> to the infinite strip <math display=inline> \left|\operatorname{Im}z\right| \leq \tfrac12\pi.</math> [[Analytic continuation|Analytically continued]] by [[Schwarz reflection principle|reflections]] to the whole complex plane, <math display=inline>z \mapsto w = \operatorname{gd} z</math> is a periodic function of period <math display=inline>2\pi i</math> which sends any infinite strip of "height" <math display=inline>2\pi i</math> onto the strip <math display=inline>-\pi< \operatorname{Re}w \leq \pi.</math> Likewise, extended to the whole complex plane, <math display=inline>w \mapsto z = \operatorname{gd}^{-1} w</math> is a periodic function of period <math display=inline>2\pi</math> which sends any infinite strip of "width" <math display=inline>2\pi</math> onto the strip <math display=inline>-\pi < \operatorname{Im}z \leq \pi.</math><ref>{{harvp|Kennelly|1929}}</ref> For all points in the complex plane, these functions can be correctly written as: :<math>\begin{aligned} \operatorname{gd} z &= {2\arctan}\bigl(\tanh\tfrac12 z \,\bigr), \\[5mu] \operatorname{gd}^{-1} w &= {2\operatorname{artanh}}\bigl(\tan\tfrac12 w \,\bigr). \end{aligned}</math> For the <math display=inline>\operatorname{gd}</math> and <math display=inline>\operatorname{gd}^{-1}</math> functions to remain invertible with these extended domains, we might consider each to be a [[multivalued function]] (perhaps <math display=inline>\operatorname{Gd}</math> and <math display=inline>\operatorname{Gd}^{-1}</math>, with <math display=inline>\operatorname{gd}</math> and <math display=inline>\operatorname{gd}^{-1}</math> the [[principal branch]]) or consider their domains and codomains as [[Riemann surface]]s. If <math display=inline>u + iv = \operatorname{gd}(x + iy),</math> then the real and imaginary components <math display=inline>u</math> and <math display=inline>v</math> can be found by:<ref>{{harvp|Kennelly|1929}} [https://archive.org/details/dli.ministry.19102/page/181 p. 181]; {{harvp|Beyer|1987}} [https://archive.org/details/crchandbookofmat00beye/page/269/mode/1up p. 269]</ref> :<math> \tan u = \frac{\sinh x}{\cos y}, \quad \tanh v = \frac{\sin y}{\cosh x}. </math> (In practical implementation, make sure to use the [[atan2|2-argument arctangent]], {{nobr|<math display=inline>u = \operatorname{atan2}(\sinh x, \cos y)</math>.)}} Likewise, if <math display=inline>x + iy = \operatorname{gd}^{-1}(u + iv),</math> then components <math display=inline>x</math> and <math display=inline>y</math> can be found by:<ref>{{harvp|Beyer|1987}} [https://archive.org/details/crchandbookofmat00beye/page/269/mode/1up p. 269] β note the typo.</ref> :<math> \tanh x = \frac{\sin u}{\cosh v}, \quad \tan y = \frac{\sinh v}{\cos u}. </math> Multiplying these together reveals the additional identity<ref name=weinstein/> :<math> \tanh x\, \tan y = \tan u\, \tanh v. </math> === Symmetries === The two functions can be thought of as rotations or reflections of each-other, with a similar relationship as <math display=inline>\sinh iz = i \sin z</math> [[Hyperbolic functions#Hyperbolic functions for complex numbers|between sine and hyperbolic sine]]:<ref>{{harvp|Legendre|1817}} [https://archive.org/details/exercicescalculi02legerich/page/n165/ Β§4.2.8(163) pp. 144β145]</ref> :<math>\begin{aligned} \operatorname{gd} iz &= i \operatorname{gd}^{-1} z, \\[5mu] \operatorname{gd}^{-1} iz &= i \operatorname{gd} z. \end{aligned}</math> The functions are both [[even and odd functions|odd]] and they commute with [[complex conjugate|complex conjugation]]. That is, a reflection across the real or imaginary axis in the domain results in the same reflection in the codomain: :<math>\begin{aligned} \operatorname{gd} (-z) &= -\operatorname{gd} z, &\quad \operatorname{gd} \bar z &= \overline{\operatorname{gd} z}, &\quad \operatorname{gd} (-\bar z) &= -\overline{\operatorname{gd} z}, \\[5mu] \operatorname{gd}^{-1} (-z) &= -\operatorname{gd}^{-1} z, &\quad \operatorname{gd}^{-1} \bar z &= \overline{\operatorname{gd}^{-1} z}, &\quad \operatorname{gd}^{-1} (-\bar z) &= -\overline{\operatorname{gd}^{-1} z}. \end{aligned}</math> The functions are [[periodic function|periodic]], with periods <math display=inline>2\pi i</math> and <math display=inline>2\pi</math>: :<math>\begin{aligned} \operatorname{gd} (z + 2\pi i) &= \operatorname{gd} z, \\[5mu] \operatorname{gd}^{-1} (z + 2\pi) &= \operatorname{gd}^{-1} z. \end{aligned}</math> A translation in the domain of <math display=inline>\operatorname{gd}</math> by <math display=inline>\pm\pi i</math> results in a half-turn rotation and translation in the codomain by one of <math display=inline>\pm\pi,</math> and vice versa for <math display=inline>\operatorname{gd}^{-1}\colon</math><ref>{{harvp|Kennelly|1929}} [https://archive.org/details/dli.ministry.19102/page/182 p. 182]</ref> :<math>\begin{aligned} \operatorname{gd} ({\pm \pi i} + z) &= \begin{cases} \pi - \operatorname{gd} z \quad &\mbox{if }\ \ \operatorname{Re} z \geq 0, \\[5mu] -\pi - \operatorname{gd} z \quad &\mbox{if }\ \ \operatorname{Re} z < 0, \end{cases} \\[15mu] \operatorname{gd}^{-1} ({\pm \pi} + z) &= \begin{cases} \pi i - \operatorname{gd}^{-1} z \quad &\mbox{if }\ \ \operatorname{Im} z \geq 0, \\[3mu] -\pi i - \operatorname{gd}^{-1} z \quad &\mbox{if }\ \ \operatorname{Im} z < 0. \end{cases} \end{aligned}</math> A reflection in the domain of <math display=inline>\operatorname{gd}</math> across either of the lines <math display=inline>x \pm \tfrac12\pi i</math> results in a reflection in the codomain across one of the lines <math display=inline>\pm \tfrac12\pi + yi,</math> and vice versa for <math display=inline>\operatorname{gd}^{-1}\colon</math> :<math>\begin{aligned} \operatorname{gd} ({\pm \pi i} + \bar z) &= \begin{cases} \pi - \overline{\operatorname{gd} z} \quad &\mbox{if }\ \ \operatorname{Re} z \geq 0, \\[5mu] -\pi - \overline{\operatorname{gd} z} \quad &\mbox{if }\ \ \operatorname{Re} z < 0, \end{cases} \\[15mu] \operatorname{gd}^{-1} ({\pm \pi} - \bar z) &= \begin{cases} \pi i + \overline{\operatorname{gd}^{-1} z} \quad &\mbox{if }\ \ \operatorname{Im} z \geq 0, \\[3mu] -\pi i + \overline{\operatorname{gd}^{-1} z} \quad &\mbox{if }\ \ \operatorname{Im} z < 0. \end{cases} \end{aligned}</math> This is related to the identity :<math> \tanh\tfrac12 ({\pi i} \pm z) = \tan\tfrac12 ({\pi} \mp \operatorname{gd} z). </math> === Specific values === A few specific values (where <math display=inline>\infty</math> indicates the limit at one end of the infinite strip):<ref>{{harvp|Kahlig|Reich|2013}}</ref> :<math>\begin{align} \operatorname{gd}(0) &= 0, &\quad {\operatorname{gd}}\bigl({\pm {\log}\bigl(2 + \sqrt3\bigr)}\bigr) &= \pm \tfrac13\pi, \\[5mu] \operatorname{gd}(\pi i) &= \pi, &\quad {\operatorname{gd}}\bigl({\pm \tfrac13}\pi i\bigr) &= \pm {\log}\bigl(2 + \sqrt3\bigr)i, \\[5mu] \operatorname{gd}({\pm \infty}) &= \pm\tfrac12\pi, &\quad {\operatorname{gd}}\bigl({\pm {\log}\bigl(1 + \sqrt2\bigr)}\bigr) &= \pm \tfrac14\pi, \\[5mu] {\operatorname{gd}}\bigl({\pm \tfrac12}\pi i\bigr) &= \pm \infty i, &\quad {\operatorname{gd}}\bigl({\pm \tfrac14}\pi i\bigr) &= \pm {\log}\bigl(1 + \sqrt2\bigr)i, \\[5mu] && {\operatorname{gd}}\bigl({\log}\bigl(1 + \sqrt2\bigr) \pm \tfrac12\pi i\bigr) &= \tfrac12\pi \pm {\log}\bigl(1 + \sqrt2\bigr)i, \\[5mu] && {\operatorname{gd}}\bigl({-\log}\bigl(1 + \sqrt2\bigr) \pm \tfrac12\pi i\bigr) &= -\tfrac12\pi \pm {\log}\bigl(1 + \sqrt2\bigr)i. \end{align}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)