Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
HSAB theory
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Chemical hardness == {|align="right" class="wikitable" style="margin-left: 1.5em" |+ align="center"|Chemical hardness in [[electron volt]]<ref name="abshardess" /> |- !colspan=3 align="center"|Acids||colspan=3 align="center"|Bases |- ||[[Hydrogen]]|| H<sup>+</sup>||[[Infinity|β]]||[[Fluoride]]|| F<sup>β</sup>||7 |- ||[[Aluminium]]|| Al<sup>3+</sup>||45.8||[[Ammonia]]|| NH<sub>3</sub>||6.8 |- ||[[Lithium]]|| Li<sup>+</sup>||35.1||[[hydride]]|| H<sup>β</sup>||6.8 |- ||[[Scandium]]|| Sc<sup>3+</sup>||24.6||[[carbon monoxide]]|| CO ||6.0 |- ||[[Sodium]]|| Na<sup>+</sup>||21.1||[[hydroxyl]]|| OH<sup>β</sup>||5.6 |- ||[[Lanthanum]]|| La<sup>3+</sup>||15.4||[[cyanide]]|| CN<sup>β</sup>||5.3 |- ||[[Zinc]]|| Zn<sup>2+</sup>||10.8||[[phosphine]]|| PH<sub>3</sub>||5.0 |- ||[[Carbon dioxide]]|| CO<sub>2</sub>||10.8||[[nitrite]]|| NO<sub>2</sub><sup>β</sup>||4.5 |- ||[[Sulfur dioxide]]|| SO<sub>2</sub>||5.6||[[Hydrosulfide]]|| SH<sup>β</sup>||4.1 |- ||[[Iodine]]|| I<sub>2</sub>||3.4||[[Methane]]|| CH<sub>3</sub><sup>β</sup>||4.0 |} In 1983 Pearson together with [[Robert Parr]] extended the qualitative HSAB theory with a quantitative definition of the '''chemical hardness''' ([[Eta (letter)|Ξ·]]) as being proportional to the second derivative of the total energy of a chemical system with respect to changes in the number of electrons at a fixed nuclear environment:<ref name="abshardess">{{cite journal |author1=Robert G. Parr |author2=Ralph G. Pearson |name-list-style=amp | title = Absolute hardness: companion parameter to absolute electronegativity | journal = [[J. Am. Chem. Soc.]] | year = 1983 | volume = 105 |issue = 26 | pages = 7512β7516 | doi = 10.1021/ja00364a005}}</ref> :<math>\eta = \frac{1}{2}\left(\frac{\partial^2 E}{\partial N^2}\right)_Z</math> The factor of one-half is arbitrary and often dropped as Pearson has noted.<ref>{{cite journal|author=Ralph G. Pearson|title=Chemical hardness and density functional theory|journal=J. Chem. Sci.|volume=117|issue=5|year=2005|pages=369β377|url=http://www.ias.ac.in/chemsci/Pdf-sep2005/369.pdf|doi=10.1007/BF02708340|citeseerx=10.1.1.693.7436|s2cid=96042488}}</ref> An operational definition for the chemical hardness is obtained by applying a three-point [[finite difference]] approximation to the second derivative:<ref>{{cite book|last=Delchev|first=Ya. I.|author2=A. I. Kuleff |author3=J. Maruani |author4=Tz. Mineva |author5=F. Zahariev |title=Strutinsky's shell-correction method in the extended Kohn-Sham scheme: application to the ionization potential, electron affinity, electronegativity and chemical hardness of atoms in Recent Advances in the Theory of Chemical and Physical Systems|editor=Jean-Pierre Julien |editor2=Jean Maruani |editor3=Didier Mayou|publisher=Springer-Verlag|location=New York|year=2006|pages=159β177|isbn=978-1-4020-4527-1|url=https://books.google.com/books?id=MxZhcgIg9x0C}}</ref> :<math> \begin{align} \eta &\approx \frac{E(N+1)-2E(N)+E(N-1)}{2}\\ &=\frac{(E(N-1)-E(N)) - (E(N)-E(N+1))}{2}\\ &=\frac{1}{2}(I-A) \end{align} </math> where ''I'' is the [[ionization potential]] and ''A'' the [[electron affinity]]. This expression implies that the chemical hardness is proportional to the [[band gap]] of a chemical system, when a gap exists. The first derivative of the energy with respect to the number of electrons is equal to the [[chemical potential]], ''ΞΌ'', of the system, :<math>\mu= \left(\frac{\partial E}{\partial N}\right)_Z</math>, from which an operational definition for the chemical potential is obtained from a finite difference approximation to the first order derivative as :<math> \begin{align} \mu &\approx \frac{E(N+1)-E(N-1)}{2}\\ &=\frac{-(E(N-1)-E(N))-(E(N)-E(N+1))}{2}\\ &=-\frac{1}{2}(I+A) \end{align} </math> which is equal to the negative of the [[electronegativity]] ([[Chi (letter)|''Ο'']]) definition on the [[Mulliken scale#Mulliken electronegativity|Mulliken scale]]: ''ΞΌ'' = β''Ο''. The hardness and Mulliken electronegativity are related as :<math>2\eta = \left(\frac{\partial \mu}{\partial N}\right)_Z \approx -\left(\frac{\partial \chi}{\partial N}\right)_Z</math>, and in this sense hardness is a measure for resistance to deformation or change. Likewise a value of zero denotes maximum '''softness''', where softness is defined as the reciprocal of hardness. In a compilation of hardness values only that of the [[hydride]] anion deviates. Another discrepancy noted in the original 1983 article are the apparent higher hardness of [[Thallium|Tl<sup>3+</sup>]] compared to Tl<sup>+</sup>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)