Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hahn–Banach theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Hahn–Banach theorem== A real-valued function <math>f : M \to \R</math> defined on a subset <math>M</math> of <math>X</math> is said to be {{em|{{visible anchor|dominated real functional|text=dominated (above) by}}}} a function <math>p : X \to \R</math> if <math>f(m) \leq p(m)</math> for every <math>m \in M.</math> For this reason, the following version of the Hahn–Banach theorem is called {{em|the dominated [[Extension of a function|extension]] theorem}}. {{Math theorem | name = {{visible anchor|Hahn–Banach dominated extension theorem}} (for real linear functionals){{sfn|Rudin|1991|pp=56-62}}<ref>{{harvnb|Rudin|1991}}, Th. 3.2</ref>{{sfn|Narici|Beckenstein|2011|pp=177-183}} | math_statement = If <math>p : X \to \R</math> is a [[sublinear function]] (such as a [[Norm (mathematics)|norm]] or [[seminorm]] for example) defined on a real vector space <math>X</math> then any [[linear functional]] defined on a vector subspace of <math>X</math> that is [[#dominated real functional|dominated above]] by <math>p</math> has at least one [[Linear extension (linear algebra)|linear extension]] to all of <math>X</math> that is also dominated above by <math>p.</math> Explicitly, if <math>p : X \to \R</math> is a [[sublinear function]], which by definition means that it satisfies <math display=block>p(x + y) \leq p(x) + p(y) \quad \text{ and } \quad p(t x) = t p(x) \qquad \text{ for all } \; x, y \in X \; \text{ and all real } \; t \geq 0,</math> and if <math>f : M \to \R</math> is a linear functional defined on a vector subspace <math>M</math> of <math>X</math> such that <math display=block>f(m) \leq p(m) \quad \text{ for all } m \in M</math> then there exists a linear functional <math>F : X \to \R</math> such that <math display=block>F(m) = f(m) \quad \text{ for all } m \in M,</math> <math display=block>F(x) \leq p(x) \quad ~\;\, \text{ for all } x \in X.</math> Moreover, if <math>p</math> is a [[seminorm]] then <math>|F(x)| \leq p(x)</math> necessarily holds for all <math>x \in X.</math> }} The theorem remains true if the requirements on <math>p</math> are relaxed to require only that <math>p</math> be a [[convex function]]:{{Sfn|Schechter|1996|pp=318-319}}{{Sfn|Reed|Simon|1980|p=}} <math display=block>p(t x + (1 - t) y) \leq t p(x) + (1 - t) p(y) \qquad \text{ for all } 0 < t < 1 \text{ and } x, y \in X.</math> <!-- Substituting <math>\tfrac{t}{1-t} y</math> in for <math>y</math> gives <math>p(t x + t y) \leq t p(x) + (1 - t) p\left(\tfrac{t}{1-t} y\right).</math> Substituting <math>\tfrac{1}{t} x</math> in for <math>x</math> and <math>\tfrac{1}{1-t} y</math> in for <math>y</math> gives <math>p(x + y) \leq \tfrac{p((1/t) x)}{1/t} + \tfrac{p(1/(1-t) y)}{1/(1-t)}.</math> --> A function <math>p : X \to \R</math> is convex and satisfies <math>p(0) \leq 0</math> if and only if <math>p(a x + b y) \leq a p(x) + b p(y)</math> for all vectors <math>x, y \in X</math> and all non-negative real <math>a, b \geq 0</math> such that <math>a + b \leq 1.</math> Every [[sublinear function]] is a convex function. On the other hand, if <math>p : X \to \R</math> is convex with <math>p(0) \geq 0,</math> then the function defined by <math>p_0(x) \;\stackrel{\scriptscriptstyle\text{def}}{=}\; \inf_{t > 0} \frac{p(tx)}{t}</math> is [[Homogeneous_function#Positive_homogeneity|positively homogeneous]] (because for all <math>x</math> and <math>r>0</math> one has <math>p_0(rx)=\inf_{t > 0} \frac{p(trx)}{t} =r\inf_{t > 0} \frac{p(trx)}{tr} = r\inf_{\tau > 0} \frac{p(\tau x)}{\tau}=rp_0(x)</math>), hence, being convex, [[Sublinear_function#Examples_and_sufficient_conditions|it is sublinear]]. It is also bounded above by <math>p_0 \leq p,</math> and satisfies <math>F \leq p_0</math> for every linear functional <math>F \leq p.</math> So the extension of the Hahn–Banach theorem to convex functionals does not have a much larger content than the classical one stated for sublinear functionals. If <math>F : X \to \R</math> is linear then <math>F \leq p</math> if and only if{{sfn|Rudin|1991|pp=56-62}} <math display=block>-p(-x) \leq F(x) \leq p(x) \quad \text{ for all } x \in X,</math> which is the (equivalent) conclusion that some authors{{sfn|Rudin|1991|pp=56-62}} write instead of <math>F \leq p.</math> It follows that if <math>p : X \to \R</math> is also {{em|symmetric}}, meaning that <math>p(-x) = p(x)</math> holds for all <math>x \in X,</math> then <math>F \leq p</math> if and only <math>|F| \leq p.</math> Every [[Norm (mathematics)|norm]] is a [[seminorm]] and both are symmetric [[Balanced function|balanced]] sublinear functions. A sublinear function is a seminorm if and only if it is a [[balanced function]]. On a real vector space (although not on a complex vector space), a sublinear function is a seminorm if and only if it is symmetric. The [[identity function]] <math>\R \to \R</math> on <math>X := \R</math> is an example of a sublinear function that is not a seminorm. ===For complex or real vector spaces=== The dominated extension theorem for real linear functionals implies the following alternative statement of the Hahn–Banach theorem that can be applied to linear functionals on real or complex vector spaces. {{Math theorem | name = {{visible anchor|Hahn–Banach theorem for real or complex vector spaces|text=Hahn–Banach theorem}}{{sfn|Narici|Beckenstein|2011|pp=177-220}}<ref>{{harvnb|Rudin|1991}}, Th. 3.2</ref> | math_statement = Suppose <math>p : X \to \R</math> a [[seminorm]] on a vector space <math>X</math> over the field <math>\mathbf{K},</math> which is either <math>\R</math> or <math>\Complex.</math> If <math>f : M \to \mathbf{K}</math> is a linear functional on a vector subspace <math>M</math> such that <math display=block>|f(m)| \leq p(m) \quad \text{ for all } m \in M,</math> then there exists a linear functional <math>F : X \to \mathbf{K}</math> such that <math display=block>F(m) = f(m) \quad \; \text{ for all } m \in M,</math> <math display=block>|F(x)| \leq p(x) \quad \;\, \text{ for all } x \in X.</math> }} The theorem remains true if the requirements on <math>p</math> are relaxed to require only that for all <math>x, y \in X</math> and all scalars <math>a</math> and <math>b</math> satisfying <math>|a| + |b| \leq 1,</math>{{Sfn|Reed|Simon|1980|p=}} <math display=block>p(a x + b y) \leq |a| p(x) + |b| p(y).</math> This condition holds if and only if <math>p</math> is a [[Convex function|convex]] and [[balanced function]] satisfying <math>p(0) \leq 0,</math> or equivalently, if and only if it is convex, satisfies <math>p(0) \leq 0,</math> and <math>p(u x) \leq p(x)</math> for all <math>x \in X</math> and all [[unit length]] scalars <math>u.</math> A complex-valued functional <math>F</math> is said to be {{em|{{visible anchor|dominated complex functional|text=dominated by <math>p</math>}}}} if <math>|F(x)| \leq p(x)</math> for all <math>x</math> in the domain of <math>F.</math> With this terminology, the above statements of the Hahn–Banach theorem can be restated more succinctly: :'''Hahn–Banach dominated extension theorem''': If <math>p : X \to \R</math> is a [[seminorm]] defined on a real or complex vector space <math>X,</math> then every [[#dominated complex functional|dominated]] linear functional defined on a vector subspace of <math>X</math> has a dominated linear extension to all of <math>X.</math> In the case where <math>X</math> is a real vector space and <math>p : X \to \R</math> is merely a [[Convex function|convex]] or [[sublinear function]], this conclusion will remain true if both instances of "[[#dominated complex functional|dominated]]" (meaning <math>|F| \leq p</math>) are weakened to instead mean "[[#dominated real functional|dominated {{em|above}}]]" (meaning <math>F \leq p</math>).{{Sfn|Schechter|1996|pp=318-319}}{{Sfn|Reed|Simon|1980|p=}} '''Proof''' The following observations allow the [[#Hahn–Banach dominated extension theorem|Hahn–Banach theorem for real vector spaces]] to be applied to (complex-valued) linear functionals on complex vector spaces. Every linear functional <math>F : X \to \Complex</math> on a complex vector space is [[Linear form#Real and imaginary parts of a linear functional|completely determined]] by its [[real part]] <math>\; \operatorname{Re} F : X \to \R \;</math> through the formula{{sfn|Narici|Beckenstein|2011|pp=177-183}}<ref group=proof>If <math>z = a + i b \in \Complex</math> has real part <math>\operatorname{Re} z = a</math> then <math>- \operatorname{Re} (i z) = b,</math> which proves that <math>z = \operatorname{Re} z - i \operatorname{Re} (i z).</math> Substituting <math>F(x)</math> in for <math>z</math> and using <math>i F(x) = F(i x)</math> gives <math>F(x) = \operatorname{Re} F(x) - i \operatorname{Re} F(i x).</math> <math>\blacksquare</math></ref> <math display=block>F(x) \;=\; \operatorname{Re} F(x) - i \operatorname{Re} F(i x) \qquad \text{ for all } x \in X</math> and moreover, if <math>\|\cdot\|</math> is a [[Norm (mathematics)|norm]] on <math>X</math> then their [[dual norm]]s are equal: <math>\|F\| = \|\operatorname{Re} F\|.</math>{{sfn|Narici|Beckenstein|2011|pp=126-128}} In particular, a linear functional on <math>X</math> extends another one defined on <math>M \subseteq X</math> if and only if their real parts are equal on <math>M</math> (in other words, a linear functional <math>F</math> extends <math>f</math> if and only if <math>\operatorname{Re} F</math> extends <math>\operatorname{Re} f</math>). The real part of a linear functional on <math>X</math> is always a {{visible anchor|real-linear functional}} (meaning that it is linear when <math>X</math> is considered as a real vector space) and if <math>R : X \to \R</math> is a real-linear functional on a complex vector space then <math>x \mapsto R(x) - i R(i x)</math> defines the unique linear functional on <math>X</math> whose real part is <math>R.</math> If <math>F</math> is a linear functional on a (complex or real) vector space <math>X</math> and if <math>p : X \to \R</math> is a seminorm then{{sfn|Narici|Beckenstein|2011|pp=177-183}}<ref group=proof>Let <math>F</math> be any [[Homogeneous function#Homogeneity|homogeneous]] scalar-valued map on <math>X</math> (such as a linear functional) and let <math>p : X \to \R</math> be any map that satisfies <math>p(u x) = p(x)</math> for all <math>x</math> and [[unit length]] scalars <math>u</math> (such as a seminorm). If <math>|F| \leq p</math> then <math>\operatorname{Re} F \leq |\operatorname{Re} F| \leq |F| \leq p.</math> For the converse, assume <math>\operatorname{Re} F \leq p</math> and fix <math>x \in X.</math> Let <math>r = |F(x)|</math> and pick any <math>\theta \in \R</math> such that <math>F(x) = r e^{i \theta};</math> it remains to show <math>r \leq p(x).</math> Homogeneity of <math>F</math> implies <math>F\left(e^{-i \theta} x\right) = r</math> is real so that <math>\operatorname{Re} F\left(e^{-i \theta} x\right) = F\left(e^{-i \theta} x\right).</math> By assumption, <math>\operatorname{Re} F \leq p</math> and <math>p\left(e^{-i \theta} x\right) = p(x),</math> so that <math>r = \operatorname{Re} F\left(e^{-i \theta} x\right) \leq p\left(e^{-i \theta} x\right) = p(x),</math> as desired. <math>\blacksquare</math></ref> <math display=block>|F| \,\leq\, p \quad \text{ if and only if } \quad \operatorname{Re} F \,\leq\, p.</math> Stated in simpler language, a linear functional is [[#dominated complex functional|dominated]] by a seminorm <math>p</math> if and only if its [[#dominated real functional|real part is dominated above]] by <math>p.</math> {{Math proof|title=Proof of [[#Hahn–Banach theorem for real or complex vector spaces|Hahn–Banach for complex vector spaces]] by reduction to real vector spaces{{sfn|Narici|Beckenstein|2011|pp=177-220}}|drop=hidden|proof= Suppose <math>p : X \to \R</math> is a seminorm on a complex vector space <math>X</math> and let <math>f : M \to \Complex</math> be a linear functional defined on a vector subspace <math>M</math> of <math>X</math> that satisfies <math>|f| \leq p</math> on <math>M.</math> Consider <math>X</math> as a real vector space and apply the [[#Hahn–Banach dominated extension theorem|Hahn–Banach theorem for real vector spaces]] to the [[#real-linear functional|real-linear functional]] <math>\; \operatorname{Re} f : M \to \R \;</math> to obtain a real-linear extension <math>R : X \to \R</math> that is also dominated above by <math>p,</math> so that it satisfies <math>R \leq p</math> on <math>X</math> and <math>R = \operatorname{Re} f</math> on <math>M.</math> The map <math>F : X \to \Complex</math> defined by <math>F(x) \;=\; R(x) - i R(i x)</math> is a linear functional on <math>X</math> that extends <math>f</math> (because their real parts agree on <math>M</math>) and satisfies <math>|F| \leq p</math> on <math>X</math> (because <math>\operatorname{Re} F \leq p</math> and <math>p</math> is a seminorm). <math>\blacksquare</math> }} The proof above shows that when <math>p</math> is a seminorm then there is a one-to-one correspondence between dominated linear extensions of <math>f : M \to \Complex</math> and dominated real-linear extensions of <math>\operatorname{Re} f : M \to \R;</math> the proof even gives a formula for explicitly constructing a linear extension of <math>f</math> from any given real-linear extension of its real part. '''Continuity''' A linear functional <math>F</math> on a [[topological vector space]] is [[Continuous linear functional|continuous]] if and only if this is true of its real part <math>\operatorname{Re} F;</math> if the domain is a normed space then <math>\|F\| = \|\operatorname{Re} F\|</math> (where one side is infinite if and only if the other side is infinite).{{sfn|Narici|Beckenstein|2011|pp=126-128}} Assume <math>X</math> is a [[topological vector space]] and <math>p : X \to \R</math> is [[sublinear function]]. If <math>p</math> is a [[Continuity (topology)|continuous]] sublinear function that dominates a linear functional <math>F</math> then <math>F</math> is necessarily continuous.{{sfn|Narici|Beckenstein|2011|pp=177-183}} Moreover, a linear functional <math>F</math> is continuous if and only if its [[absolute value]] <math>|F|</math> (which is a [[seminorm]] that dominates <math>F</math>) is continuous.{{sfn|Narici|Beckenstein|2011|pp=177-183}} In particular, a linear functional is continuous if and only if it is dominated by some continuous sublinear function. ===Proof=== The [[#Hahn–Banach dominated extension theorem|Hahn–Banach theorem for real vector spaces]] ultimately follows from Helly's initial result for the special case where the linear functional is extended from <math>M</math> to a larger vector space in which <math>M</math> has [[codimension]] <math>1.</math>{{sfn|Narici|Beckenstein|2011|pp=177-220}} {{Math theorem | name = Lemma{{sfn|Narici|Beckenstein|2011|pp=177-183}} | note = {{visible anchor|One–dimensional dominated extension theorem}} | math_statement = Let <math>p : X \to \R</math> be a [[sublinear function]] on a real vector space <math>X,</math> let <math>f : M \to \R</math> a [[linear functional]] on a [[Proper subset|proper]] [[vector subspace]] <math>M \subsetneq X</math> such that <math>f \leq p</math> on <math>M</math> (meaning <math>f(m) \leq p(m)</math> for all <math>m \in M</math>), and let <math>x \in X</math> be a vector {{em|not}} in <math>M</math> (so <math>M \oplus \R x = \operatorname{span} \{M, x\}</math>). There exists a linear extension <math>F : M \oplus \R x \to \R</math> of <math>f</math> such that <math>F \leq p</math> on <math>M \oplus \R x.</math> }} {{Math proof|title=Proof{{sfn|Narici|Beckenstein|2011|pp=177-183}}|drop=hidden|proof= Given any real number <math>b,</math> the map <math>F_b : M \oplus \R x \to \R</math> defined by <math>F_b(m + r x) = f(m) + r b</math> is always a linear extension of <math>f</math> to <math>M \oplus \R x</math><ref group=note>This definition means, for instance, that <math>F_b(x) = F_b(0 + 1 x) = f(0) + 1 b = b</math> and if <math>m \in M</math> then <math>F_b(m) = F_b(m + 0 x) = f(m) + 0 b = f(m).</math> In fact, if <math>G : M \oplus \R x \to \R</math> is any linear extension of <math>f</math> to <math>M \oplus \R x</math> then <math>G = F_b</math> for <math>b := G(x).</math> In other words, every linear extension of <math>f</math> to <math>M \oplus \R x</math> is of the form <math>F_b</math> for some (unique) <math>b.</math></ref> but it might not satisfy <math>F_b \leq p.</math> It will be shown that <math>b</math> can always be chosen so as to guarantee that <math>F_b \leq p,</math> which will complete the proof. If <math>m, n \in M</math> then <math display=block>f(m) - f(n) = f(m - n) \leq p(m - n) = p(m + x - x - n) \leq p(m + x) + p(- x - n)</math> which implies <math display=block>-p(-n - x) - f(n) ~\leq~ p(m + x) - f(m).</math> <!--where importantly, the left hand side is independent of <math>m</math> and the right hand side is independent of <math>n.</math>--> So define <math display=block>a = \sup_{n \in M}[-p(-n - x) - f(n)] \qquad \text{ and } \qquad c = \inf_{m \in M} [p(m + x) - f(m)]</math> where <math>a \leq c</math> are real numbers. To guarantee <math>F_b \leq p,</math> it suffices that <math>a \leq b \leq c</math> (in fact, this is also necessary<ref group=note>Explicitly, for any real number <math>b \in \R,</math> <math>F_b \leq p</math> on <math>M \oplus \R x</math> if and only if <math>a \leq b \leq c.</math> Combined with the fact that <math>F_b(x) = b,</math> it follows that the dominated linear extension of <math>f</math> to <math>M \oplus \R x</math> is unique if and only if <math>a = c,</math> in which case this scalar will be the extension's values at <math>x.</math> Since every linear extension of <math>f</math> to <math>M \oplus \R x</math> is of the form <math>F_b</math> for some <math>b,</math> the bounds <math>a \leq b = F_b(x) \leq c</math> thus also limit the range of possible values (at <math>x</math>) that can be taken by any of <math>f</math>'s dominated linear extensions. Specifically, if <math>F : X \to \R</math> is any linear extension of <math>f</math> satisfying <math>F \leq p</math> then for every <math>x \in X \setminus M,</math> <math>\sup_{m \in M}[-p(-m - x) - f(m)] ~\leq~ F(x) ~\leq~ \inf_{m \in M} [p(m + x) - f(m)].</math></ref>) because then <math>b</math> satisfies "the decisive inequality"{{sfn|Narici|Beckenstein|2011|pp=177-183}} <math display=block>-p(-n - x) - f(n) ~\leq~ b ~\leq~ p(m + x) - f(m) \qquad \text{ for all }\; m, n \in M.</math> To see that <math>f(m) + r b \leq p(m + r x)</math> follows,<ref group=note name="GeometricIllustration" /> assume <math>r \neq 0</math> and substitute <math>\tfrac{1}{r} m</math> in for both <math>m</math> and <math>n</math> to obtain <math display=block>-p\left(- \tfrac{1}{r} m - x\right) - \tfrac{1}{r} f\left(m\right) ~\leq~ b ~\leq~ p\left(\tfrac{1}{r} m + x\right) - \tfrac{1}{r} f\left(m\right).</math> If <math>r > 0</math> (respectively, if <math>r < 0</math>) then the right (respectively, the left) hand side equals <math>\tfrac{1}{r} \left[p(m + r x) - f(m)\right]</math> so that multiplying by <math>r</math> gives <math>r b \leq p(m + r x) - f(m).</math> <!--<math display=block>-p\left(- \tfrac{1}{r} m - x\right) - f\left(\tfrac{1}{r} m\right) = -p\left(\left(- \tfrac{1}{r}\right) \left(m + rx\right)\right) - \tfrac{1}{r} f(m) = \tfrac{1}{r} \left[p(m + r x) - f(m)\right].</math> --> <math>\blacksquare</math> }} This lemma remains true if <math>p : X \to \R</math> is merely a [[convex function]] instead of a sublinear function.{{Sfn|Schechter|1996|pp=318-319}}{{Sfn|Reed|Simon|1980|p=}} {{collapse top|title=Proof|left=true}} Assume that <math>p</math> is convex, which means that <math>p(t y + (1 - t) z) \leq t p(y) + (1 - t) p(z)</math> for all <math>0 \leq t \leq 1</math> and <math>y, z \in X.</math> Let <math>M,</math> <math>f : M \to \R,</math> and <math>x \in X \setminus M</math> be as in [[Hahn–Banach theorem#One–dimensional dominated extension theorem|the lemma's statement]]. Given any <math>m, n \in M</math> and any positive real <math>r, s > 0,</math> the positive real numbers <math>t := \tfrac{s}{r + s}</math> and <math>\tfrac{r}{r + s} = 1 - t</math> sum to <math>1</math> so that the convexity of <math>p</math> on <math>X</math> guarantees <math display=block>\begin{alignat}{9} p\left(\tfrac{s}{r + s} m + \tfrac{r}{r + s} n\right) ~&=~ p\big(\tfrac{s}{r + s} (m - r x) &&+ \tfrac{r}{r + s} (n + s x)\big) && \\ &\leq~ \tfrac{s}{r + s} \; p(m - r x) &&+ \tfrac{r}{r + s} \; p(n + s x) && \\ \end{alignat}</math> and hence <math display=block>\begin{alignat}{9} s f(m) + r f(n) ~&=~ (r + s) \; f\left(\tfrac{s}{r + s} m + \tfrac{r}{r + s} n\right) && \qquad \text{ by linearity of } f \\ &\leq~ (r + s) \; p\left(\tfrac{s}{r + s} m + \tfrac{r}{r + s} n\right) && \qquad f \leq p \text{ on } M \\ &\leq~ s p(m - r x) + r p(n + s x) \\ \end{alignat}</math> thus proving that <math>- s p(m - r x) + s f(m) ~\leq~ r p(n + s x) - r f(n),</math> which after multiplying both sides by <math>\tfrac{1}{rs}</math> becomes <math display=block>\tfrac{1}{r} [- p(m - r x) + f(m)] ~\leq~ \tfrac{1}{s} [p(n + s x) - f(n)].</math> This implies that the values defined by <math display=block>a = \sup_{\stackrel{m \in M}{r > 0}} \tfrac{1}{r} [- p(m - r x) + f(m)] \qquad \text{ and } \qquad c = \inf_{\stackrel{n \in M}{s > 0}} \tfrac{1}{s} [p(n + s x) - f(n)]</math> are real numbers that satisfy <math>a \leq c.</math> As in the above proof of the [[Hahn–Banach theorem#One–dimensional dominated extension theorem|one–dimensional dominated extension theorem]] above, for any real <math>b \in \R</math> define <math>F_b : M \oplus \R x \to \R</math> by <math>F_b(m + r x) = f(m) + r b.</math> It can be verified that if <math>a \leq b \leq c</math> then <math>F_b \leq p</math> where <math>r b \leq p(m + r x) - f(m)</math> follows from <math>b \leq c</math> when <math>r > 0</math> (respectively, follows from <math>a \leq b</math> when <math>r < 0</math>). <math>\blacksquare</math> {{collapse bottom}} The [[#One–dimensional dominated extension theorem|lemma above]] is the key step in deducing the dominated extension theorem from [[Zorn's lemma]]. {{Math proof|title=Proof of dominated extension theorem using [[Zorn's lemma]]|drop=hidden|proof= The set of all possible dominated linear extensions of <math>f</math> are partially ordered by extension of each other, so there is a maximal extension <math>F.</math> By the codimension-1 result, if <math>F</math> is not defined on all of <math>X,</math> then it can be further extended. Thus <math>F</math> must be defined everywhere, as claimed. <math>\blacksquare</math> }} When <math>M</math> has countable codimension, then using induction and the lemma completes the proof of the Hahn–Banach theorem. The standard proof of the general case uses [[Zorn's lemma]] although the strictly weaker [[ultrafilter lemma]]{{sfn|Luxemburg|1962|p=}} (which is equivalent to the [[compactness theorem]] and to the [[Boolean prime ideal theorem]]) may be used instead. Hahn–Banach can also be proved using [[Tychonoff's theorem]] for [[Compact space|compact]] [[Hausdorff space]]s{{sfn|Łoś|Ryll-Nardzewski|1951|pp=233–237}} (which is also equivalent to the ultrafilter lemma) The [[Mizar system|Mizar project]] has completely formalized and automatically checked the proof of the Hahn–Banach theorem in the HAHNBAN file.<ref>[http://mizar.uwb.edu.pl/JFM/Vol5/hahnban.html HAHNBAN file]</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)