Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hamiltonian mechanics
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Phase space coordinates (''p'', ''q'') and Hamiltonian ''H'' === Let <math>(M, \mathcal L)</math> be a [[Lagrangian mechanics|mechanical system]] with [[configuration space (physics)|configuration space]] <math>M</math> and smooth [[Lagrangian_mechanics#Lagrangian|Lagrangian]] <math> \mathcal L.</math> Select a standard coordinate system <math>(\boldsymbol{q},\boldsymbol{\dot q})</math> on <math>M.</math> The quantities <math>\textstyle p_i(\boldsymbol{q},\boldsymbol{\dot q},t) ~\stackrel{\text{def}}{=}~ {\partial \mathcal L}/{\partial \dot q^i}</math> are called ''momenta''. (Also ''generalized momenta'', ''conjugate momenta'', and ''canonical momenta''). For a time instant <math>t,</math> the [[Legendre transformation#Legendre transformation on manifolds|Legendre transformation]] of <math>\mathcal{L}</math> is defined as the map <math>(\boldsymbol{q}, \boldsymbol{\dot q}) \to \left(\boldsymbol{p},\boldsymbol{q}\right) </math> which is assumed to have a smooth inverse <math>(\boldsymbol{p},\boldsymbol{q}) \to (\boldsymbol{q},\boldsymbol{\dot q}).</math> For a system with <math>n</math> degrees of freedom, the Lagrangian mechanics defines the ''energy function'' <math display="block">E_{\mathcal L}(\boldsymbol{q},\boldsymbol{\dot q},t)\, \stackrel{\text{def}}{=}\, \sum^n_{i=1} \dot q^i \frac{\partial \mathcal L}{\partial \dot q^i} - \mathcal L.</math> The Legendre transform of <math>\mathcal{L}</math> turns <math>E_{\mathcal L}</math> into a function <math> \mathcal H(\boldsymbol{p},\boldsymbol{q},t)</math> known as the {{em|Hamiltonian}}. The Hamiltonian satisfies <math display="block"> \mathcal H\left(\frac{\partial \mathcal L}{\partial \boldsymbol{\dot q}},\boldsymbol{q},t\right) = E_{\mathcal L}(\boldsymbol{q},\boldsymbol{\dot q},t) </math> which implies that <math display="block"> \mathcal H(\boldsymbol{p},\boldsymbol{q},t) = \sum^n_{i=1} p_i\dot q^i - \mathcal L(\boldsymbol{q},\boldsymbol{\dot q},t), </math> where the velocities <math>\boldsymbol{\dot q} = (\dot q^1,\ldots, \dot q^n)</math> are found from the (<math>n</math>-dimensional) equation <math>\textstyle \boldsymbol{p} = {\partial \mathcal L}/{\partial \boldsymbol{\dot q}}</math> which, by assumption, is uniquely solvable for {{tmath|1= \boldsymbol{\dot q} }}. The (<math>2n</math>-dimensional) pair <math>(\boldsymbol{p},\boldsymbol{q})</math> is called ''phase space coordinates''. (Also ''canonical coordinates'').
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)