Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hermite polynomials
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Properties== The {{mvar|n}}th-order Hermite polynomial is a polynomial of degree {{mvar|n}}. The probabilist's version {{mvar|He<sub>n</sub>}} has leading coefficient 1, while the physicist's version {{mvar|H<sub>n</sub>}} has leading coefficient {{math|2<sup>''n''</sup>}}. ===Symmetry=== From the Rodrigues formulae given above, we can see that {{math|''H<sub>n</sub>''(''x'')}} and {{math|''He<sub>n</sub>''(''x'')}} are [[Even and odd functions|even or odd functions]] depending on {{mvar|n}}: <math display="block">H_n(-x)=(-1)^nH_n(x),\quad \operatorname{He}_n(-x)=(-1)^n\operatorname{He}_n(x).</math> ===Orthogonality=== {{math|''H<sub>n</sub>''(''x'')}} and {{math|''He<sub>n</sub>''(''x'')}} are {{mvar|n}}th-degree polynomials for {{math|''n'' {{=}} 0, 1, 2, 3,...}}. These [[orthogonal polynomials|polynomials are orthogonal]] with respect to the ''weight function'' ([[measure (mathematics)|measure]]) <math display="block">w(x) = e^{-\frac{x^2}{2}} \quad (\text{for }\operatorname{He})</math> or <math display="block">w(x) = e^{-x^2} \quad (\text{for } H),</math> i.e., we have <math display="block">\int_{-\infty}^\infty H_m(x) H_n(x)\, w(x) \,dx = 0 \quad \text{for all }m \neq n.</math> Furthermore, <math display="block">\int_{-\infty}^\infty H_m(x) H_n(x)\, e^{-x^2} \,dx = \sqrt{\pi}\, 2^n n!\, \delta_{nm},</math> and <math display="block">\int_{-\infty}^\infty \operatorname{He}_m(x) \operatorname{He}_n(x)\, e^{-\frac{x^2}{2}} \,dx = \sqrt{2 \pi}\, n!\, \delta_{nm},</math> where <math>\delta_{nm}</math> is the [[Kronecker delta]]. The probabilist polynomials are thus orthogonal with respect to the standard normal probability density function. === Completeness === The Hermite polynomials (probabilist's or physicist's) form an [[orthonormal basis|orthogonal basis]] of the [[Hilbert space]] of functions satisfying <math display="block">\int_{-\infty}^\infty \bigl|f(x)\bigr|^2\, w(x) \,dx < \infty,</math> in which the inner product is given by the integral <math display="block">\langle f,g\rangle = \int_{-\infty}^\infty f(x) \overline{g(x)}\, w(x) \,dx</math> including the [[gaussian function|Gaussian]] weight function {{math|''w''(''x'')}} defined in the preceding section. An orthogonal basis for {{math|[[Lp space|''L''<sup>2</sup>('''R''', ''w''(''x'') ''dx'')]]}} is a [[Hilbert space#Orthonormal bases|''complete'' orthogonal system]]. For an orthogonal system, ''completeness'' is equivalent to the fact that the 0 function is the only function {{math|''f'' ∈ ''L''<sup>2</sup>('''R''', ''w''(''x'') ''dx'')}} orthogonal to ''all'' functions in the system. Since the [[linear span]] of Hermite polynomials is the space of all polynomials, one has to show (in physicist case) that if {{mvar|f}} satisfies <math display="block">\int_{-\infty}^\infty f(x) x^n e^{- x^2} \,dx = 0</math> for every {{math|''n'' ≥ 0}}, then {{math|1=''f'' = 0}}. One possible way to do this is to appreciate that the [[entire function]] <math display="block">F(z) = \int_{-\infty}^\infty f(x) e^{z x - x^2} \,dx = \sum_{n=0}^\infty \frac{z^n}{n!} \int f(x) x^n e^{- x^2} \,dx = 0</math> vanishes identically. The fact then that {{math|1=''F''(''it'') = 0}} for every real {{mvar|t}} means that the [[Fourier transform]] of {{math|''f''(''x'')''e''<sup>−''x''<sup>2</sup></sup>}} is 0, hence {{mvar|f}} is 0 [[almost everywhere]]. Variants of the above completeness proof apply to other weights with [[exponential decay]]. In the Hermite case, it is also possible to prove an explicit identity that implies completeness (see section on the [[#Completeness_relation|Completeness relation]] below). An equivalent formulation of the fact that Hermite polynomials are an orthogonal basis for {{math|''L''<sup>2</sup>('''R''', ''w''(''x'') ''dx'')}} consists in introducing Hermite ''functions'' (see below), and in saying that the Hermite functions are an orthonormal basis for {{math|''L''<sup>2</sup>('''R''')}}. ===Hermite's differential equation=== The probabilist's Hermite polynomials are solutions of the [[differential equation]] <math display="block">\left(e^{-\frac12 x^2}u'\right)' + \lambda e^{-\frac 1 2 x^2}u = 0,</math> where {{mvar|λ}} is a constant. Imposing the boundary condition that {{mvar|u}} should be polynomially bounded at infinity, the equation has solutions only if {{mvar|λ}} is a non-negative integer, and the solution is uniquely given by <math>u(x) = C_1 \operatorname{He}_\lambda(x) </math>, where <math>C_{1}</math> denotes a constant. Rewriting the differential equation as an [[Eigenvalue|eigenvalue problem]] <math display="block">L[u] = u'' - x u' = -\lambda u,</math> the Hermite polynomials <math>\operatorname{He}_\lambda(x) </math> may be understood as [[eigenfunction]]s of the differential operator <math>L[u]</math> . This eigenvalue problem is called the '''Hermite equation''', although the term is also used for the closely related equation <math display="block">u'' - 2xu' = -2\lambda u.</math> whose solution is uniquely given in terms of physicist's Hermite polynomials in the form <math>u(x) = C_1 H_\lambda(x) </math>, where <math>C_{1}</math> denotes a constant, after imposing the boundary condition that {{mvar|u}} should be polynomially bounded at infinity. The general solutions to the above second-order differential equations are in fact linear combinations of both Hermite polynomials and confluent hypergeometric functions of the first kind. For example, for the physicist's Hermite equation <math display="block">u'' - 2xu' + 2\lambda u = 0,</math> the general solution takes the form <math display="block">u(x) = C_1 H_\lambda(x) + C_2 h_\lambda(x),</math> where <math>C_{1}</math> and <math>C_{2}</math> are constants, <math>H_\lambda(x)</math> are physicist's Hermite polynomials (of the first kind), and <math>h_\lambda(x)</math> are physicist's Hermite functions (of the second kind). The latter functions are compactly represented as <math> h_\lambda(x) = {}_1F_1(-\tfrac{\lambda}{2};\tfrac{1}{2};x^2)</math> where <math>{}_1F_1(a;b;z)</math> are [[Confluent hypergeometric function|Confluent hypergeometric functions of the first kind]]. The conventional Hermite polynomials may also be expressed in terms of confluent hypergeometric functions, see below. With more general [[boundary conditions]], the Hermite polynomials can be generalized to obtain more general [[analytic function]]s for complex-valued {{mvar|λ}}. An explicit formula of Hermite polynomials in terms of [[contour integral]]s {{harv|Courant|Hilbert|1989}} is also possible. ===Recurrence relation=== The sequence of probabilist's Hermite polynomials also satisfies the [[recurrence relation]] <math display="block">\operatorname{He}_{n+1}(x) = x \operatorname{He}_n(x) - \operatorname{He}_n'(x).</math> Individual coefficients are related by the following recursion formula: <math display="block">a_{n+1,k} = \begin{cases} - (k+1) a_{n,k+1} & k = 0, \\ a_{n,k-1} - (k+1) a_{n,k+1} & k > 0, \end{cases}</math> and {{math|1=''a''<sub>0,0</sub> = 1}}, {{math|1=''a''<sub>1,0</sub> = 0}}, {{math|1=''a''<sub>1,1</sub> = 1}}. For the physicist's polynomials, assuming <math display="block">H_n(x) = \sum^n_{k=0} a_{n,k} x^k,</math> we have <math display="block">H_{n+1}(x) = 2xH_n(x) - H_n'(x).</math> Individual coefficients are related by the following recursion formula: <math display="block">a_{n+1,k} = \begin{cases} - a_{n,k+1} & k = 0, \\ 2 a_{n,k-1} - (k+1)a_{n,k+1} & k > 0, \end{cases}</math> and {{math|1=''a''<sub>0,0</sub> = 1}}, {{math|1=''a''<sub>1,0</sub> = 0}}, {{math|1=''a''<sub>1,1</sub> = 2}}. The Hermite polynomials constitute an [[Appell sequence]], i.e., they are a polynomial sequence satisfying the identity <math display="block">\begin{align} \operatorname{He}_n'(x) &= n\operatorname{He}_{n-1}(x), \\ H_n'(x) &= 2nH_{n-1}(x). \end{align}</math> An integral recurrence that is deduced and demonstrated in <ref>Hurtado Benavides, Miguel Ángel. (2020). De las sumas de potencias a las sucesiones de Appell y su caracterización a través de funcionales. [Tesis de maestría]. Universidad Sergio Arboleda.</ref> is as follows: <math display="block">\operatorname{He}_{n+1}(x) = (n+1)\int_0^x \operatorname{He}_n(t)dt - He'_n(0),</math> <math display="block">H_{n+1}(x) = 2(n+1)\int_0^x H_n(t)dt - H'_n(0).</math> Equivalently, by [[Taylor series|Taylor-expanding]], <math display="block">\begin{align} \operatorname{He}_n(x+y) &= \sum_{k=0}^n \binom{n}{k}x^{n-k} \operatorname{He}_{k}(y) &&= 2^{-\frac n 2} \sum_{k=0}^n \binom{n}{k} \operatorname{He}_{n-k}\left(x\sqrt 2\right) \operatorname{He}_k\left(y\sqrt 2\right), \\ H_n(x+y) &= \sum_{k=0}^n \binom{n}{k}H_{k}(x) (2y)^{n-k} &&= 2^{-\frac n 2}\cdot\sum_{k=0}^n \binom{n}{k} H_{n-k}\left(x\sqrt 2\right) H_k\left(y\sqrt 2\right). \end{align}</math> These [[umbral calculus|umbral]] identities are self-evident and [[#Generalizations|included]] in the [[#Differential-operator representation|differential operator representation]] detailed below, <math display="block">\begin{align} \operatorname{He}_n(x) &= e^{-\frac{D^2}{2}} x^n, \\ H_n(x) &= 2^n e^{-\frac{D^2}{4}} x^n. \end{align}</math> In consequence, for the {{mvar|m}}th derivatives the following relations hold: <math display="block">\begin{align} \operatorname{He}_n^{(m)}(x) &= \frac{n!}{(n-m)!} \operatorname{He}_{n-m}(x) &&= m! \binom{n}{m} \operatorname{He}_{n-m}(x), \\ H_n^{(m)}(x) &= 2^m \frac{n!}{(n-m)!} H_{n-m}(x) &&= 2^m m! \binom{n}{m} H_{n-m}(x). \end{align}</math> It follows that the Hermite polynomials also satisfy the [[recurrence relation]] <math display="block">\begin{align} \operatorname{He}_{n+1}(x) &= x\operatorname{He}_n(x) - n\operatorname{He}_{n-1}(x), \\ H_{n+1}(x) &= 2xH_n(x) - 2nH_{n-1}(x). \end{align}</math> These last relations, together with the initial polynomials {{math|''H''<sub>0</sub>(''x'')}} and {{math|''H''<sub>1</sub>(''x'')}}, can be used in practice to compute the polynomials quickly. [[Turán's inequalities]] are <math display="block">\mathit{H}_n(x)^2 - \mathit{H}_{n-1}(x) \mathit{H}_{n+1}(x) = (n-1)! \sum_{i=0}^{n-1} \frac{2^{n-i}}{i!}\mathit{H}_i(x)^2 > 0.</math> Moreover, the following [[multiplication theorem]] holds: <math display="block">\begin{align} H_n(\gamma x) &= \sum_{i=0}^{\left\lfloor \tfrac{n}{2} \right\rfloor} \gamma^{n-2i}(\gamma^2 - 1)^i \binom{n}{2i} \frac{(2i)!}{i!} H_{n-2i}(x), \\ \operatorname{He}_n(\gamma x) &= \sum_{i=0}^{\left\lfloor \tfrac{n}{2} \right\rfloor} \gamma^{n-2i}(\gamma^2 - 1)^i \binom{n}{2i} \frac{(2i)!}{i!}2^{-i} \operatorname{He}_{n-2i}(x). \end{align}</math> ===Explicit expression=== The physicist's Hermite polynomials can be written explicitly as <math display="block">H_n(x) = \begin{cases} \displaystyle n! \sum_{l = 0}^{\frac{n}{2}} \frac{(-1)^{\tfrac{n}{2} - l}}{(2l)! \left(\tfrac{n}{2} - l \right)!} (2x)^{2l} & \text{for even } n, \\ \displaystyle n! \sum_{l = 0}^{\frac{n-1}{2}} \frac{(-1)^{\frac{n-1}{2} - l}}{(2l + 1)! \left (\frac{n-1}{2} - l \right )!} (2x)^{2l + 1} & \text{for odd } n. \end{cases}</math> These two equations may be combined into one using the [[floor function]]: <math display="block">H_n(x) = n! \sum_{m=0}^{\left\lfloor \tfrac{n}{2} \right\rfloor} \frac{(-1)^m}{m!(n - 2m)!} (2x)^{n - 2m}.</math> The probabilist's Hermite polynomials {{mvar|He}} have similar formulas, which may be obtained from these by replacing the power of {{math|2''x''}} with the corresponding power of {{math|{{sqrt|2}} ''x''}} and multiplying the entire sum by {{math|2<sup>−{{sfrac|''n''|2}}</sup>}}: <math display="block">\operatorname{He}_n(x) = n! \sum_{m=0}^{\left\lfloor \tfrac{n}{2} \right\rfloor} \frac{(-1)^m}{m!(n - 2m)!} \frac{x^{n - 2m}}{2^m}.</math> ===Inverse explicit expression=== The inverse of the above explicit expressions, that is, those for monomials in terms of probabilist's Hermite polynomials {{mvar|He}} are <math display="block">x^n = n! \sum_{m=0}^{\left\lfloor \tfrac{n}{2} \right\rfloor} \frac{1}{2^m m!(n-2m)!} \operatorname{He}_{n-2m}(x).</math> The corresponding expressions for the physicist's Hermite polynomials {{mvar|H}} follow directly by properly scaling this:<ref>{{cite web |title=18. Orthogonal Polynomials, Classical Orthogonal Polynomials, Sums |url=http://dlmf.nist.gov/18.18.E20 |website=Digital Library of Mathematical Functions |publisher=National Institute of Standards and Technology |access-date=30 January 2015 |ref=DLMF}}</ref> <math display="block">x^n = \frac{n!}{2^n} \sum_{m=0}^{\left\lfloor \tfrac{n}{2} \right\rfloor} \frac{1}{m!(n-2m)! } H_{n-2m}(x).</math> ===Generating function=== The Hermite polynomials are given by the [[exponential generating function]] <math display="block">\begin{align} e^{xt - \frac12 t^2} &= \sum_{n=0}^\infty \operatorname{He}_n(x) \frac{t^n}{n!}, \\ e^{2xt - t^2} &= \sum_{n=0}^\infty H_n(x) \frac{t^n}{n!}. \end{align}</math> This equality is valid for all [[complex number|complex]] values of {{mvar|x}} and {{mvar|t}}, and can be obtained by writing the Taylor expansion at {{mvar|x}} of the entire function {{math|''z'' → ''e''<sup>−''z''<sup>2</sup></sup>}} (in the physicist's case). One can also derive the (physicist's) generating function by using [[Cauchy's integral formula]] to write the Hermite polynomials as <math display="block">H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2} = (-1)^n e^{x^2} \frac{n!}{2\pi i} \oint_\gamma \frac{e^{-z^2}}{(z-x)^{n+1}} \,dz.</math> Using this in the sum <math display="block">\sum_{n=0}^\infty H_n(x) \frac {t^n}{n!},</math> one can evaluate the remaining integral using the calculus of residues and arrive at the desired generating function. A slight generalization states<ref>(Rainville 1971), p. 198</ref><math display="block">e^{2 x t-t^2} H_k(x-t) = \sum_{n=0}^{\infty} \frac{H_{n+k}(x) t^n}{n!}</math> ===Expected values=== If {{mvar|X}} is a [[random variable]] with a [[normal distribution]] with standard deviation 1 and expected value {{mvar|μ}}, then <math display="block">\operatorname{\mathbb E}\left[\operatorname{He}_n(X)\right] = \mu^n.</math> The moments of the standard normal (with expected value zero) may be read off directly from the relation for even indices: <math display="block">\operatorname{\mathbb E}\left[X^{2n}\right] = (-1)^n \operatorname{He}_{2n}(0) = (2n-1)!!,</math> where {{math|(2''n'' − 1)!!}} is the [[double factorial]]. Note that the above expression is a special case of the representation of the probabilist's Hermite polynomials as moments: <math display="block">\operatorname{He}_n(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^\infty (x + iy)^n e^{-\frac{y^2}{2}} \,dy.</math> === Integral representations === From the generating-function representation above, we see that the Hermite polynomials have a representation in terms of a [[contour integral]], as <math display="block">\begin{align} \operatorname{He}_n(x) &= \frac{n!}{2\pi i} \oint_C \frac{e^{tx-\frac{t^2}{2}}}{t^{n+1}}\,dt, \\ H_n(x) &= \frac{n!}{2\pi i} \oint_C \frac{e^{2tx-t^2}}{t^{n+1}}\,dt, \end{align}</math> with the contour encircling the origin. Using the Fourier transform of the gaussian <math>e^{-x^2}=\frac{1}{\sqrt{ \pi}} \int e^{-t^2+2 i x t} dt </math>, we have<math display="block">\begin{align} H_n(x) &= (-1)^n e^{x^2} \frac {d^n}{dx^n} e^{-x^2} = \frac{(-2 i)^n e^{x^2}}{\sqrt{\pi}} \int t^n e^{-t^2+2 i x t} d t \\ \operatorname{He}_n(x) &= \frac{(-i)^n e^{x^2/2}}{\sqrt{2\pi}} \int t^n \, e^{-t^2/2 + i x t}\, dt. \end{align}</math> === Other properties === The addition theorem, or the summation theorem, states that<ref name=":1">{{Cite web |title=DLMF: §18.18 Sums ‣ Classical Orthogonal Polynomials ‣ Chapter 18 Orthogonal Polynomials |url=https://dlmf.nist.gov/18.18 |access-date=2025-03-18 |website=dlmf.nist.gov}}</ref><ref>{{Cite book |last1=Gradshteĭn |first1=I. S. |title=Table of integrals, series, and products |last2=Zwillinger |first2=Daniel |date=2015 |publisher=Elsevier, Academic Press is an imprint of Elsevier |isbn=978-0-12-384933-5 |edition=8 |location=Amsterdam ; Boston}}</ref>{{Pg|location=8.958}}<math display="block">\frac{\left(\sum_{k=1}^r a_k^2\right)^{\frac{n}{2}}}{n!} H_n\left(\frac{\sum_{k=1}^r a_k x_k}{\sqrt{\sum_{k=1}^r a_k^2}}\right)=\sum_{m_1+m_2+\ldots+m_r=n, m_i \geq 0} \prod_{k=1}^r\left\{\frac{a_k^{m_k}}{m_{k}!} H_{m_k}\left(x_k\right)\right\} </math>for any nonzero vector <math>a_{1:r}</math>. The multiplication theorem states that<ref name=":1" /><math display="block">H_{n}\left(\lambda x\right)=\lambda^{n}\sum_{\ell=0}^{\left\lfloor n/2\right\rfloor}\frac{{\left(-n\right)_{2\ell}}}{\ell!}(1-\lambda^{-2})^{\ell}H_{n-2\ell}\left(x\right)</math>for any nonzero <math>\lambda</math>. Feldheim formula<ref name=":2">Feldheim, Ervin. "Développements en série de polynômes d’Hermite et de Laguerrea l’aide des transformations de Gauss et de Hankel." Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen 435 (1940). Part [https://dwc.knaw.nl/DL/publications/PU00017406.pdf I], [https://dwc.knaw.nl/DL/publications/PU00017407.pdf II], [https://dwc.knaw.nl/DL/publications/PU00017420.pdf III]</ref>{{Pg|location=Eq 46}}<math display="block">\begin{aligned} \frac{1}{\sqrt{a \pi}} & \int_{-\infty}^{+\infty} e^{-\frac{x^2}{a}} H_m\left(\frac{x+y}{\lambda}\right) H_n\left(\frac{x+z}{\mu}\right) d x \\ & = \left(1-\frac{a}{\lambda^2}\right)^{\frac{m}{2}}\left(1-\frac{a}{\mu^2}\right)^{\frac{n}{2}} \sum_{r=0}^{\min (m, n)} r!\binom{m}{r}\binom{n}{r} \left(\frac{2 a}{\sqrt{\left(\lambda^2-a\right)\left(\mu^2-a\right)}}\right)^r H_{m-r}\left(\frac{y}{\sqrt{\lambda^2-a}}\right) H_{n-r}\left(\frac{z}{\sqrt{\mu^2-a}}\right) \end{aligned}</math>where <math>a \in \mathbb C</math> has a positive real part. As a special case,<ref name=":2" />{{Pg|location=Eq 52}}<math display="block">\frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{-t^2} H_m(t \sin \theta+v \cos \theta) H_n(t \cos \theta-v \sin \theta) d t =(-1)^n \cos ^m \theta \sin ^n \theta H_{m+n}(v)</math> ===Asymptotic expansion=== Asymptotically, as {{math|''n'' → ∞}}, the expansion<ref>{{harvnb|Abramowitz|Stegun|1983|page=508–510}}, [http://www.math.sfu.ca/~cbm/aands/page_508.htm 13.6.38 and 13.5.16].</ref> <math display="block">e^{-\frac{x^2}{2}}\cdot H_n(x) \sim \frac{2^n}{\sqrt \pi}\Gamma\left(\frac{n+1}2\right) \cos \left(x \sqrt{2 n}- \frac{n\pi}{2} \right)</math> holds true. For certain cases concerning a wider range of evaluation, it is necessary to include a factor for changing amplitude: <math display="block">e^{-\frac{x^2}{2}}\cdot H_n(x) \sim \frac{2^n}{\sqrt \pi}\Gamma\left(\frac{n+1}2\right) \cos \left(x \sqrt{2 n}- \frac{n\pi}{2} \right)\left(1-\frac{x^2}{2n+1}\right)^{-\frac14}=\frac{\Gamma(n)}{\Gamma\left(\frac{n}2\right)} \cos \left(x \sqrt{2 n}- \frac{n\pi}{2} \right)\left(1-\frac{x^2}{2n+1}\right)^{-\frac14},</math> which, using [[Stirling's approximation]], can be further simplified, in the limit, to <math display="block">e^{-\frac{x^2}{2}}\cdot H_n(x) \sim \left(\frac{2n}{e}\right)^{\frac{n}{2}} \sqrt{2} \cos \left(x \sqrt{2n}- \frac{n\pi}{2} \right)\left(1-\frac{x^2}{2n+1}\right)^{-\frac14}.</math> This expansion is needed to resolve the [[wavefunction]] of a [[quantum harmonic oscillator]] such that it agrees with the classical approximation in the limit of the [[correspondence principle]]. A better approximation, which accounts for the variation in frequency, is given by <math display="block">e^{-\frac{x^2}{2}}\cdot H_n(x) \sim \left(\frac{2n}{e}\right)^{\frac{n}{2}} \sqrt{2} \cos \left(x \sqrt{2n+1-\frac{x^2}{3}}- \frac {n\pi}{2} \right)\left(1-\frac{x^2}{2n+1}\right)^{-\frac14}.</math> A finer approximation,<ref>{{harvnb|Szegő|1955|p=201}}</ref> which takes into account the uneven spacing of the zeros near the edges, makes use of the substitution <math display="block">x = \sqrt{2n + 1}\cos(\varphi), \quad 0 < \varepsilon \leq \varphi \leq \pi - \varepsilon,</math> with which one has the uniform approximation <math display="block">e^{-\frac{x^2}{2}}\cdot H_n(x) = 2^{\frac{n}{2}+\frac14}\sqrt{n!}(\pi n)^{-\frac14}(\sin \varphi)^{-\frac12} \cdot \left(\sin\left(\frac{3\pi}{4} + \left(\frac{n}{2} + \frac{1}{4}\right)\left(\sin 2\varphi-2\varphi\right) \right)+O\left(n^{-1}\right) \right).</math> Similar approximations hold for the monotonic and transition regions. Specifically, if <math display="block">x = \sqrt{2n+1} \cosh(\varphi), \quad 0 < \varepsilon \leq \varphi \leq \omega < \infty,</math> then <math display="block">e^{-\frac{x^2}{2}}\cdot H_n(x) = 2^{\frac{n}{2}-\frac34}\sqrt{n!}(\pi n)^{-\frac14}(\sinh \varphi)^{-\frac12} \cdot e^{\left(\frac{n}{2}+\frac{1}{4}\right)\left(2\varphi-\sinh 2\varphi\right)}\left(1+O\left(n^{-1}\right) \right),</math> while for <math display="block">x = \sqrt{2n + 1} + t</math> with {{mvar|t}} complex and bounded, the approximation is <math display="block">e^{-\frac{x^2}{2}}\cdot H_n(x) =\pi^{\frac14}2^{\frac{n}{2}+\frac14}\sqrt{n!}\, n^{-\frac{1}{12}}\left( \operatorname{Ai}\left(2^{\frac12}n^{\frac16}t\right)+ O\left(n^{-\frac23}\right) \right),</math> where {{math|Ai}} is the [[Airy function]] of the first kind. ===Special values=== The physicist's Hermite polynomials evaluated at zero argument {{math|''H<sub>n</sub>''(0)}} are called [[Hermite number]]s. <math display="block">H_n(0) = \begin{cases} 0 & \text{for odd }n, \\ (-2)^\frac{n}{2} (n-1)!! & \text{for even }n, \end{cases}</math> which satisfy the recursion relation {{math|1=''H<sub>n</sub>''(0) = −2(''n'' − 1)''H''<sub>''n'' − 2</sub>(0)}}. Equivalently, <math>H_{2n}(0) = (-2)^n (2n-1)!!</math>. In terms of the probabilist's polynomials this translates to <math display="block">\operatorname{He}_n(0) = \begin{cases} 0 & \text{for odd }n, \\ (-1)^\frac{n}{2} (n-1)!! & \text{for even }n. \end{cases}</math> === Kibble–Slepian formula === Let <math display="inline">M</math> be a real <math display="inline">n\times n</math> symmetric matrix, then the '''Kibble–Slepian formula''' states that<math display="block">\det(I+M)^{-\frac 12 } e^{x^T M (I+M)^{-1}x} = \sum_K \left[\prod_{1\leq i \leq j \leq n} \frac{(M_{ij}/2)^{k_{ij}}}{k_{ij}!}\right] 2^{-tr(K)} H_{k_1}(x_1) \cdots H_{k_n}(x_n)</math> where <math display="inline">\sum_K</math> is the <math>\frac{n(n+1)}{2}</math>-fold summation over all <math display="inline">n \times n</math> symmetric matrices with non-negative integer entries, <math>tr(K)</math> is the [[Trace (linear algebra)|trace]] of <math>K</math>, and <math display="inline">k_i</math> is defined as <math display="inline">k_{ii} + \sum_{j=1}^n k_{ij}</math>. This gives [[Mehler kernel|Mehler's formula]] when <math>M = \begin{bmatrix} 0 & u \\ u & 0\end{bmatrix}</math>. Equivalently stated, if <math display="inline">T</math> is a [[Positive semidefinite matrices|positive semidefinite matrix]], then set <math display="inline">M = -T(I+T)^{-1}</math>, we have <math display="inline">M(I+M)^{-1} = -T</math>, so <math display="block"> e^{-x^T T x} = \det(I+T)^{-\frac 12} \sum_K \left[\prod_{1\leq i \leq j \leq n} \frac{(M_{ij}/2)^{k_{ij}}}{k_{ij}!}\right] 2^{-tr(K)} H_{k_1}(x_1) \dots H_{k_n}(x_n) </math>Equivalently stated in a form closer to the [[boson]] [[quantum mechanics]] of the [[harmonic oscillator]]:<ref name=":0">{{Cite journal |last=Louck |first=J. D |date=1981-09-01 |title=Extension of the Kibble-Slepian formula for Hermite polynomials using boson operator methods |url=https://dx.doi.org/10.1016/0196-8858%2881%2990005-1 |journal=Advances in Applied Mathematics |volume=2 |issue=3 |pages=239–249 |doi=10.1016/0196-8858(81)90005-1 |issn=0196-8858}}</ref><math display="block"> \pi^{-n/4}\det(I+M)^{-\frac 12 }e^{- \frac 12 x^T(I-M)(I+M)^{-1} x}= \sum_K\left[\prod_{1 \leq i \leq j \leq n} M_{i j}^{k_{i j}} / k_{i j}!\right]\left[\prod_{1 \leq i \leq n} k_{i}!\right]^{1 / 2} 2^{-\operatorname{tr} K} \psi_{k_1}\left(x_1\right) \cdots \psi_{k_n}\left(x_n\right) . </math> where each <math display="inline">\psi_n(x)</math> is the <math display="inline">n</math>-th eigenfunction of the harmonic oscillator, defined as <math display="block">\psi_n(x) := \frac{1}{\sqrt{2^n n!}}\left(\frac{1}{\pi}\right)^{\frac{1}{4}} e^{-\frac{1}{2} x^2} H_n(x) </math>The Kibble–Slepian formula was proposed by Kibble in 1945<ref>{{Cite journal |last=Kibble |first=W. F. |date=June 1945 |title=An extension of a theorem of Mehler's on Hermite polynomials |url=https://www.cambridge.org/core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society/article/abs/an-extension-of-a-theorem-of-mehlers-on-hermite-polynomials/6CD265E3054D1595062F1CA83D492AC2 |journal=Mathematical Proceedings of the Cambridge Philosophical Society |language=en |volume=41 |issue=1 |pages=12–15 |doi=10.1017/S0305004100022313 |bibcode=1945PCPS...41...12K |issn=1469-8064}}</ref> and proven by Slepian in 1972 using Fourier analysis.<ref>{{Cite journal |last=Slepian |first=David |date=November 1972 |title=On the Symmetrized Kronecker Power of a Matrix and Extensions of Mehler's Formula for Hermite Polynomials |url=https://epubs.siam.org/doi/abs/10.1137/0503060 |journal=SIAM Journal on Mathematical Analysis |volume=3 |issue=4 |pages=606–616 |doi=10.1137/0503060 |issn=0036-1410}}</ref> Foata gave a combinatorial proof<ref>{{Cite journal |last=Foata |first=Dominique |date=1981-09-01 |title=Some Hermite polynomial identities and their combinatorics |url=https://dx.doi.org/10.1016/0196-8858%2881%2990006-3 |journal=Advances in Applied Mathematics |volume=2 |issue=3 |pages=250–259 |doi=10.1016/0196-8858(81)90006-3 |issn=0196-8858}}</ref> while Louck gave a proof via boson quantum mechanics.<ref name=":0" /> It has a generalization for complex-argument Hermite polynomials.<ref>{{Cite journal |last1=Ismail |first1=Mourad E.H. |last2=Zhang |first2=Ruiming |date=September 2016 |title=Kibble–Slepian formula and generating functions for 2D polynomials |url=https://doi.org/10.1016/j.aam.2016.05.003 |journal=Advances in Applied Mathematics |volume=80 |pages=70–92 |doi=10.1016/j.aam.2016.05.003 |issn=0196-8858|arxiv=1508.01816 }}</ref><ref>{{Cite journal |last1=Ismail |first1=Mourad E. H. |last2=Zhang |first2=Ruiming |date=2017-04-01 |title=A review of multivariate orthogonal polynomials |journal=Journal of the Egyptian Mathematical Society |volume=25 |issue=2 |pages=91–110 |doi=10.1016/j.joems.2016.11.001 |issn=1110-256X|doi-access=free }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)