Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hierarchical clustering
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Cluster Linkage == In order to decide which clusters should be combined (for agglomerative), or where a cluster should be split (for divisive), a measure of dissimilarity between sets of observations is required. In most methods of hierarchical clustering, this is achieved by use of an appropriate [[distance]] ''d'', such as the Euclidean distance, between ''single'' observations of the data set, and a linkage criterion, which specifies the dissimilarity of ''sets'' as a function of the pairwise distances of observations in the sets. The choice of metric as well as linkage can have a major impact on the result of the clustering, where the lower level metric determines which objects are most [[similarity measure|similar]], whereas the linkage criterion influences the shape of the clusters <ref name=":5" />. For example, complete-linkage tends to produce more spherical clusters than single-linkage. The linkage criterion determines the distance between sets of observations as a function of the pairwise distances between observations. Some commonly used linkage criteria between two sets of observations ''A'' and ''B'' and a distance ''d'' are:<ref>{{cite web | title=The CLUSTER Procedure: Clustering Methods | url=https://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/statug_cluster_sect012.htm | work=SAS/STAT 9.2 Users Guide | publisher= [[SAS Institute]] | access-date=2009-04-26}}</ref><ref>{{cite journal |last1=Székely |first1=G. J. |last2=Rizzo |first2=M. L. |year=2005 |title=Hierarchical clustering via Joint Between-Within Distances: Extending Ward's Minimum Variance Method |journal=Journal of Classification |volume=22 |issue=2 |pages=151–183 |doi=10.1007/s00357-005-0012-9 |s2cid=206960007 }}</ref> {|class="wikitable" ! Names ! Formula |- | Maximum or [[complete-linkage clustering]] | <math> \max_{a\in A,\, b\in B} d(a,b) </math> |- | Minimum or [[single-linkage clustering]] | <math> \min_{a\in A,\, b\in B} d(a,b) </math> |- | Unweighted average linkage clustering (or [[UPGMA]]) | <math> \frac{1}{|A|\cdot|B|} \sum_{a \in A }\sum_{ b \in B} d(a,b). </math> |- | Weighted average linkage clustering (or [[WPGMA]]) | <math> d(i \cup j, k) = \frac{d(i, k) + d(j, k)}{2}. </math> |- | Centroid linkage clustering, or UPGMC | <math>\lVert \mu_A-\mu_B\rVert^2</math> where <math>\mu_A</math> and <math>\mu_B</math> are the centroids of ''A'' resp. ''B''. |- |Median linkage clustering, or WPGMC |<math>d(i\cup j, k) = d(m_{i\cup j}, m_k)</math> where <math>m_{i\cup j} = \tfrac{1}{2}\left(m_i + m_j\right)</math> |- |Versatile linkage clustering<ref name=":6">{{cite journal | doi=10.1007/s00357-019-09339-z | last1=Fernández | first1=Alberto | last2=Gómez | first2=Sergio | title=Versatile linkage: a family of space-conserving strategies for agglomerative hierarchical clustering | journal=Journal of Classification | volume=37 | year=2020 | issue=3 | pages=584–597| arxiv=1906.09222 | s2cid=195317052 }}</ref> | <math>\sqrt[p]{\frac{1}{|A|\cdot|B|} \sum_{a \in A }\sum_{ b \in B} d(a,b)^p}, p\neq 0</math> |- |[[Ward's method|Ward linkage]],<ref name="wards method">{{cite journal |last=Ward |first=Joe H. |year=1963 |title=Hierarchical Grouping to Optimize an Objective Function |journal=Journal of the American Statistical Association |volume=58 |issue=301 |pages=236–244 |doi=10.2307/2282967 |jstor=2282967 |mr=0148188}}</ref> Minimum Increase of Sum of Squares (MISSQ)<ref name=":0">{{Citation |last=Podani |first=János |title=New combinatorial clustering methods |date=1989 |url=https://doi.org/10.1007/978-94-009-2432-1_5 |work=Numerical syntaxonomy |pages=61–77 |editor-last=Mucina |editor-first=L. |place=Dordrecht |publisher=Springer Netherlands |language=en |doi=10.1007/978-94-009-2432-1_5 |isbn=978-94-009-2432-1 |access-date=2022-11-04 |editor2-last=Dale |editor2-first=M. B.}}</ref> |<math>\frac{|A|\cdot|B|}{|A\cup B|} \lVert \mu_A - \mu_B \rVert ^2 = \sum_{x\in A\cup B} \lVert x - \mu_{A\cup B} \rVert^2 - \sum_{x\in A} \lVert x - \mu_{A} \rVert^2 - \sum_{x\in B} \lVert x - \mu_{B} \rVert^2</math> |- |Minimum Error Sum of Squares (MNSSQ)<ref name=":0" /> |<math>\sum_{x\in A\cup B} \lVert x - \mu_{A\cup B} \rVert^2</math> |- |Minimum Increase in Variance (MIVAR)<ref name=":0" /> |<math>\frac{1}{|A\cup B|}\sum_{x\in A\cup B} \lVert x - \mu_{A\cup B} \rVert^2 - \frac{1}{|A|}\sum_{x\in A} \lVert x - \mu_{A} \rVert^2 - \frac{1}{|B|}\sum_{x\in B} \lVert x - \mu_{B} \rVert^2</math><math>= \text{Var}(A\cup B) - \text{Var}(A) - \text{Var}(B)</math> |- |Minimum Variance (MNVAR)<ref name=":0" /> |<math>\frac{1}{|A\cup B|}\sum_{x\in A\cup B} \lVert x - \mu_{A\cup B} \rVert^2 = \text{Var}(A\cup B)</math> |- |Hausdorff linkage<ref>{{Cite journal |last1=Basalto |first1=Nicolas |last2=Bellotti |first2=Roberto |last3=De Carlo |first3=Francesco |last4=Facchi |first4=Paolo |last5=Pantaleo |first5=Ester |last6=Pascazio |first6=Saverio |date=2007-06-15 |title=Hausdorff clustering of financial time series |url=https://www.sciencedirect.com/science/article/pii/S0378437107001124 |journal=Physica A: Statistical Mechanics and Its Applications |language=en |volume=379 |issue=2 |pages=635–644 |doi=10.1016/j.physa.2007.01.011 |arxiv=physics/0504014 |bibcode=2007PhyA..379..635B |s2cid=27093582 |issn=0378-4371}}</ref> |<math>\max_{x\in A\cup B} \min_{y\in A\cup B} d(x,y)</math> |- |Minimum Sum Medoid linkage<ref name=":1">{{Cite conference |last=Schubert |first=Erich |date=2021 |title=HACAM: Hierarchical Agglomerative Clustering Around Medoids – and its Limitations |url=http://star.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-2993/paper-19.pdf |conference=LWDA’21: Lernen, Wissen, Daten, Analysen September 01–03, 2021, Munich, Germany |pages=191–204 |via=CEUR-WS}}</ref> |<math>\min_{m\in A\cup B} \sum_{y\in A\cup B} d(m, y)</math> such that m is the medoid of the resulting cluster |- |Minimum Sum Increase Medoid linkage<ref name=":1" /> |<math>\min_{m\in A\cup B} \sum_{y\in A\cup B} d(m,y) - \min_{m\in A} \sum_{y\in A} d(m,y) - \min_{m\in B} \sum_{y\in B} d(m,y)</math> |- |Medoid linkage<ref>{{Cite conference |last1=Miyamoto |first1=Sadaaki |last2=Kaizu |first2=Yousuke |last3=Endo |first3=Yasunori |date=2016 |title=Hierarchical and Non-Hierarchical Medoid Clustering Using Asymmetric Similarity Measures |url=https://ieeexplore.ieee.org/document/7801678 |conference=2016 Joint 8th International Conference on Soft Computing and Intelligent Systems (SCIS) and 17th International Symposium on Advanced Intelligent Systems (ISIS) |pages=400–403 |doi=10.1109/SCIS-ISIS.2016.0091}}</ref><ref>{{Cite conference |date=2016 |title=Visual Clutter Reduction through Hierarchy-based Projection of High-dimensional Labeled Data| conference=Graphics Interface |url=https://graphicsinterface.org/wp-content/uploads/gi2016-14.pdf | first1=Dominik|last1=Herr|first2=Qi|last2=Han|first3=Steffen|last3=Lohmann| first4=Thomas |last4=Ertl |access-date=2022-11-04 |website=Graphics Interface |language=en-CA |doi=10.20380/gi2016.14}}</ref> |<math>d(m_A, m_B)</math> where <math>m_A</math>, <math>m_B</math> are the medoids of the previous clusters |- | [[Energy distance|Minimum energy clustering]] | <math> \frac {2}{nm}\sum_{i,j=1}^{n,m} \|a_i- b_j\|_2 - \frac {1}{n^2}\sum_{i,j=1}^{n} \|a_i-a_j\|_2 - \frac{1}{m^2}\sum_{i,j=1}^{m} \|b_i-b_j\|_2 </math> |} Some of these can only be recomputed recursively (WPGMA, WPGMC), for many a recursive computation with Lance-Williams-equations is more efficient, while for other (Hausdorff, Medoid) the distances have to be computed with the slower full formula. Other linkage criteria include: * The probability that candidate clusters spawn from the same distribution function (V-linkage). * The product of in-degree and out-degree on a k-nearest-neighbour graph (graph degree linkage).<ref>{{Cite book|last1=Zhang|first1=Wei|last2=Wang|first2=Xiaogang|last3=Zhao|first3=Deli|last4=Tang|first4=Xiaoou|title=Computer Vision – ECCV 2012 |chapter=Graph Degree Linkage: Agglomerative Clustering on a Directed Graph |date=2012|editor-last=Fitzgibbon|editor-first=Andrew|editor2-last=Lazebnik|editor2-first=Svetlana|editor2-link= Svetlana Lazebnik |editor3-last=Perona|editor3-first=Pietro|editor4-last=Sato|editor4-first=Yoichi|editor5-last=Schmid|editor5-first=Cordelia|series=Lecture Notes in Computer Science|language=en|publisher=Springer Berlin Heidelberg|volume=7572|pages=428–441|doi=10.1007/978-3-642-33718-5_31|isbn=9783642337185|arxiv=1208.5092|bibcode=2012arXiv1208.5092Z|s2cid=14751}} See also: https://github.com/waynezhanghk/gacluster</ref> * The increment of some cluster descriptor (i.e., a quantity defined for measuring the quality of a cluster) after merging two clusters.<ref>{{cite journal |first1=W. |last1=Zhang |first2=D. |last2=Zhao |first3=X. |last3=Wang |title=Agglomerative clustering via maximum incremental path integral |journal=Pattern Recognition |volume=46 |issue=11 |pages=3056–65 |date=2013 |doi=10.1016/j.patcog.2013.04.013 |citeseerx=10.1.1.719.5355 |bibcode=2013PatRe..46.3056Z}}</ref><ref>{{cite book |last1=Zhao |first1=D. |last2=Tang |first2=X. |chapter=Cyclizing clusters via zeta function of a graph |chapter-url= |title=NIPS'08: Proceedings of the 21st International Conference on Neural Information Processing Systems |date=2008 |isbn=9781605609492 |pages=1953–60 |publisher=Curran |citeseerx=10.1.1.945.1649}}</ref><ref>{{cite journal |first1=Y. |last1=Ma |first2=H. |last2=Derksen |first3=W. |last3=Hong |first4=J. |last4=Wright |title=Segmentation of Multivariate Mixed Data via Lossy Data Coding and Compression |journal=IEEE Transactions on Pattern Analysis and Machine Intelligence |volume=29 |issue=9 |pages=1546–62 |date=2007 |doi=10.1109/TPAMI.2007.1085 |pmid=17627043 |hdl=2142/99597 |s2cid=4591894 |hdl-access=free }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)