Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Histidine
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Ligand=== [[Image:Succinate Dehygrogenase 1YQ3 Haem group.png|thumb|left|The histidine-bound [[heme]] group of [[succinate dehydrogenase]], an [[electron carrier]] in the [[mitochondria]]l [[electron transfer chain]]. The large semi-transparent sphere indicates the location of the [[iron]] [[ion]]. From {{PDB|1YQ3}}.|205x205px]] [[Image:Cu3Im8laccase.png|thumb|left|The tricopper site found in many [[laccase]]s, notice that each [[copper]] center is bound to the [[imidazole]] sidechains of histidine (color code: copper is brown, [[nitrogen]] is blue).]] Histidine forms [[amino acid complex|complexes]] with many metal ions. The imidazole sidechain of the histidine residue commonly serves as a [[ligand]] in [[metalloprotein]]s. One example is the axial base attached to Fe in myoglobin and hemoglobin. Poly-histidine tags (of six or more consecutive H residues) are utilized for protein purification by binding to columns with nickel or cobalt, with micromolar affinity.<ref>{{Cite book|last1=Bornhorst|first1=J. A.|last2=Falke|first2=J. J.|chapter=Purification of proteins using polyhistidine affinity tags |date=2000|title=Applications of Chimeric Genes and Hybrid Proteins Part A: Gene Expression and Protein Purification|series=Methods in Enzymology|volume=326|pages=245–254|doi=10.1016/s0076-6879(00)26058-8|issn=0076-6879|pmc=2909483|pmid=11036646|isbn=978-0-12-182227-9 }}</ref> Natural poly-histidine peptides, found in the venom of the viper ''[[Atheris squamigera]]'' have been shown to bind Zn(II), Ni(II) and Cu(II) and affect the function of venom metalloproteases.<ref>{{Cite journal|last1=Watly|first1=Joanna|last2=Simonovsky|first2=Eyal|last3=Barbosa|first3=Nuno|last4=Spodzieja|first4=Marta|last5=Wieczorek|first5=Robert|last6=Rodziewicz-Motowidlo|first6=Sylwia|last7=Miller|first7=Yifat|last8=Kozlowski|first8=Henryk|date=2015-08-17|title=African Viper Poly-His Tag Peptide Fragment Efficiently Binds Metal Ions and Is Folded into an α-Helical Structure|url=https://pubmed.ncbi.nlm.nih.gov/26214303|journal=Inorganic Chemistry|volume=54|issue=16|pages=7692–7702|doi=10.1021/acs.inorgchem.5b01029|issn=1520-510X|pmid=26214303}}</ref> N-terminal histidines are known to function as [[bidentate]] ligands, with a metal (generally copper) bound to both the amine of the [[N-terminus]] and the N<sub>ε</sub> of the histidine; the N<sub>δ</sub> is often methylated.<ref name="Walton2023">{{Cite journal |last1=Walton |first1=Paul H. |last2=Davies |first2=Gideon J. |last3=Diaz |first3=Daniel E. |last4=Franco-Cairo |first4=João P. |date=2023 |title=The histidine brace: nature's copper alternative to haem? |journal=FEBS Letters |language=en |volume=597 |issue=4 |pages=485–494 |doi=10.1002/1873-3468.14579 |issn=1873-3468 |pmc=10952591 |pmid=36660911}}</ref> Although recently discovered,<ref>{{Cite journal |last1=Quinlan |first1=R. Jason |last2=Sweeney |first2=Matt D. |last3=Lo Leggio |first3=Leila |last4=Otten |first4=Harm |last5=Poulsen |first5=Jens-Christian N. |last6=Johansen |first6=Katja Salomon |last7=Krogh |first7=Kristian B. R. M. |last8=Jørgensen |first8=Christian Isak |last9=Tovborg |first9=Morten |last10=Anthonsen |first10=Annika |last11=Tryfona |first11=Theodora |last12=Walter |first12=Clive P. |last13=Dupree |first13=Paul |last14=Xu |first14=Feng |last15=Davies |first15=Gideon J. |date=2011-09-13 |title=Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components |journal=Proceedings of the National Academy of Sciences |volume=108 |issue=37 |pages=15079–15084 |doi=10.1073/pnas.1105776108 |doi-access=free |pmc=3174640 |pmid=21876164}}</ref> this "histidine brace" motif is critical in biogeochemical cycles: it functions as the active site of lytic polysaccharide monooxygenases (LPMOs), which break down unreactive polysaccharides such as cellulose.<ref>{{Cite journal |last1=Munzone |first1=Alessia |last2=Eijsink |first2=Vincent G. H. |last3=Berrin |first3=Jean-Guy |last4=Bissaro |first4=Bastien |date=February 2024 |title=Expanding the catalytic landscape of metalloenzymes with lytic polysaccharide monooxygenases |url=https://www.nature.com/articles/s41570-023-00565-z |journal=Nature Reviews Chemistry |language=en |volume=8 |issue=2 |pages=106–119 |doi=10.1038/s41570-023-00565-z |pmid=38200220 |issn=2397-3358|url-access=subscription }}</ref> It is proposed that the evolution of these enzymes in fungi corresponds to the first widespread ability to decompose woody plant mass, leading to the end of the [[Carboniferous|Carboniferous era]] and its mass [[Carboniferous#Coal formation|accumulation of coal deposits]].<ref name="Walton2023" />
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)