Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hurwitz's automorphisms theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Statement and proof == '''Theorem''': Let <math>X</math> be a smooth connected Riemann surface of genus <math>g \ge 2</math>. Then its automorphism group <math>\operatorname{Aut}(X)</math> has size at most <math>84(g-1)</math>. ''Proof:'' Assume for now that <math>G = \operatorname{Aut}(X)</math> is finite (this will be proved at the end). * Consider the quotient map <math>X \to X/G</math>. Since <math>G</math> acts by holomorphic functions, the quotient is locally of the form <math>z \to z^n</math> and the quotient <math>X/G</math> is a smooth Riemann surface. The quotient map <math>X \to X/G</math> is a branched cover, and we will see below that the ramification points correspond to the orbits that have a non-trivial stabiliser. Let <math>g_0</math> be the genus of <math>X/G</math>. * By the [[Riemann-Hurwitz formula]], <math display="block"> 2g-2 \ = \ |G| \cdot \left( 2g_0-2 + \sum_{i = 1}^k \left(1-\frac{1}{e_i}\right)\right) </math> where the sum is over the <math>k</math> ramification points <math>p_i \in X/G</math> for the quotient map <math> X \to X/G</math>. The ramification index <math>e_i</math> at <math>p_i</math> is just the order of the stabiliser group, since <math>e_i f_i = \deg(X/\, X/G)</math> where <math>f_i</math> the number of pre-images of <math>p_i</math> (the number of points in the orbit), and <math>\deg(X/\, X/G) = |G|</math>. By definition of ramification points, <math>e_i \ge 2</math> for all <math>k</math> ramification indices. Now call the righthand side <math>|G| R</math> and since <math>g \ge 2 </math> we must have <math>R>0</math>. Rearranging the equation we find: * If <math>g_0 \ge 2</math> then <math>R \ge 2</math>, and <math>|G| \le (g-1) </math> * If <math>g_0 = 1 </math>, then <math> k \ge 1</math> and <math>R\ge 0 + 1 - 1/2 = 1/2</math> so that <math>|G| \le 4(g-1)</math>, * If <math>g_0 = 0</math>, then <math>k \ge 3</math> and ** if <math>k \ge 5</math> then <math>R \ge -2 + k(1 - 1/2) \ge 1/2</math>, so that <math>|G| \le 4(g-1)</math> ** if <math>k=4</math> then <math> R \ge -2 + 4 - 1/2 - 1/2 - 1/2 - 1/3 = 1/6</math>, so that <math>|G| \le 12(g-1)</math>, ** if <math>k=3</math> then write <math>e_1 = p,\, e_2 = q, \, e_3 = r</math>. We may assume <math>2 \le p\le q\ \le r</math>. *** if <math> p \ge 3 </math> then <math> R \ge -2 + 3 - 1/3 - 1/3 - 1/4 = 1/12</math> so that <math>|G| \le 24(g-1)</math>, *** if <math> p = 2 </math> then **** if <math>q \ge 4 </math> then <math>R \ge -2 + 3 - 1/2 - 1/4 - 1/5 = 1/20</math> so that <math>|G| \le 40(g-1)</math>, **** if <math>q = 3 </math> then <math>R \ge -2 + 3 - 1/2 - 1/3 - 1/7 = 1/42</math> so that <math>|G| \le 84(g-1)</math>. In conclusion, <math>|G| \le 84(g-1)</math>. To show that <math>G</math> is finite, note that <math>G</math> acts on the [[cohomology]] <math>H^*(X,\mathbf{C})</math> preserving the [[Hodge decomposition]] and the [[Lattice (discrete subgroup)|lattice]] <math>H^1(X,\mathbf{Z})</math>. *In particular, its action on <math>V=H^{0,1}(X,\mathbf{C})</math> gives a homomorphism <math>h: G \to \operatorname{GL}(V)</math> with [[discrete group|discrete]] image <math>h(G)</math>. *In addition, the image <math>h(G)</math> preserves the natural non-degenerate [[Hilbert space|Hermitian inner product]] <math display="inline">(\omega,\eta)= i \int\bar{\omega}\wedge\eta</math> on <math>V</math>. In particular the image <math>h(G)</math> is contained in the [[unitary group]] <math>\operatorname{U}(V) \subset \operatorname{GL}(V)</math> which is [[Compact space|compact]]. Thus the image <math>h(G)</math> is not just discrete, but finite. * It remains to prove that <math>h: G \to \operatorname{GL}(V)</math> has finite kernel. In fact, we will prove <math>h</math> is injective. Assume <math>\varphi \in G</math> acts as the identity on <math>V</math>. If <math>\operatorname{fix}(\varphi)</math> is finite, then by the [[Lefschetz fixed-point theorem]], <math display="block"> |\operatorname{fix}(\varphi)| = 1 - 2\operatorname{tr}(h(\varphi)) + 1 = 2 - 2\operatorname{tr}(\mathrm{id}_V) = 2 - 2g < 0. </math> This is a contradiction, and so <math>\operatorname{fix}(\varphi)</math> is infinite. Since <math>\operatorname{fix}(\varphi)</math> is a closed complex sub variety of positive dimension and <math>X</math> is a smooth connected curve (i.e. <math>\dim_{\mathbf C}(X) = 1</math>), we must have <math>\operatorname{fix}(\varphi) = X</math>. Thus <math>\varphi</math> is the identity, and we conclude that <math>h</math> is injective and <math>G \cong h(G)</math> is finite. Q.E.D. '''Corollary of the proof''': A Riemann surface <math>X</math> of genus <math>g \ge 2</math> has <math>84(g-1)</math> automorphisms if and only if <math>X</math> is a branched cover <math>X \to \mathbf{P}^1</math> with three ramification points, of indices ''2'',''3'' and ''7''.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)