Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hyperbolic partial differential equation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Examples == By a linear change of variables, any equation of the form <math display="block"> A\frac{\partial^2 u}{\partial x^2} + 2B\frac{\partial^2 u}{\partial x\partial y} + C\frac{\partial^2u}{\partial y^2} + \text{(lower order derivative terms)} = 0</math> with <math display="block"> B^2 - A C > 0</math> can be transformed to the [[wave equation]], apart from lower order terms which are inessential for the qualitative understanding of the equation.<ref name="Evans 1998"/>{{rp|p=400}} This definition is analogous to the definition of a planar [[Hyperbola#Quadratic equation|hyperbola]]. The one-dimensional [[wave equation]]: <math display="block">\frac{\partial^2 u}{\partial t^2} - c^2\frac{\partial^2 u}{\partial x^2} = 0</math> is an example of a hyperbolic equation. The two-dimensional and three-dimensional wave equations also fall into the category of hyperbolic PDE. This type of second-order hyperbolic partial differential equation may be transformed to a hyperbolic system of first-order differential equations.<ref name="Evans 1998">{{Citation | last1=Evans | first1=Lawrence C. | title=Partial differential equations | orig-year=1998 | url=https://www.worldcat.org/oclc/465190110 | publisher=[[American Mathematical Society]] | location=Providence, R.I. | edition=2nd | series=[[Graduate Studies in Mathematics]] | isbn=978-0-8218-4974-3 |mr=2597943 | year=2010 | volume=19 | doi=10.1090/gsm/019| oclc=465190110 }}</ref>{{rp|p=402}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)