Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hypothalamic–pituitary–adrenal axis
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Function== Release of [[corticotropin-releasing hormone]] (CRH) from the hypothalamus is influenced by [[stress (medicine)|stress]], physical activity, illness, by blood levels of cortisol and by the sleep/wake cycle ([[circadian rhythm]]). In healthy individuals, cortisol rises rapidly after wakening, reaching a peak within 30–45 minutes. It then gradually falls over the day, rising again in late afternoon. Cortisol levels then fall in late evening, reaching a trough during the middle of the night. This corresponds to the rest-activity cycle of the organism.<ref name="isbn_9780444530400"/> An abnormally flattened circadian cortisol cycle has been linked with [[chronic fatigue syndrome]],<ref>{{cite journal |vauthors=MacHale SM, Cavanagh JT, Bennie J, Carroll S, Goodwin GM, Lawrie SM |title=Diurnal variation of adrenocortical activity in chronic fatigue syndrome |journal=Neuropsychobiology |volume=38 |issue=4 |pages=213–7 |date=November 1998 |pmid=9813459 |doi=10.1159/000026543|s2cid=46856991 }}</ref> [[insomnia]]<ref>{{cite journal |vauthors=Backhaus J, Junghanns K, Hohagen F |title=Sleep disturbances are correlated with decreased morning awakening salivary cortisol |journal=Psychoneuroendocrinology |volume=29 |issue=9 |pages=1184–91 |date=October 2004 |pmid=15219642 |doi=10.1016/j.psyneuen.2004.01.010|s2cid=14756991 }}</ref> and [[Occupational burnout|burnout]].<ref>{{cite journal |vauthors=Pruessner JC, Hellhammer DH, Kirschbaum C |title=Burnout, perceived stress, and cortisol responses to awakening |journal=Psychosom Med |volume=61 |issue=2 |pages=197–204 |year=1999 |pmid=10204973 |url=http://www.psychosomaticmedicine.org/cgi/pmidlookup?view=long&pmid=10204973 |doi=10.1097/00006842-199903000-00012|url-access=subscription }}</ref> The HPA axis has a central role in regulating many [[Homeostasis|homeostatic systems]] in the body, including the [[metabolic system]], [[cardiovascular system]], [[immune system]], [[reproductive system]] and [[central nervous system]]. The HPA axis integrates physical and [[psychosocial]] influences in order to allow an organism to adapt effectively to its environment, use resources, and optimize survival.<ref name="isbn_9780444530400">{{cite book | editor-last=del Rey | editor-first=A. | editor-last2=Chrousos | editor-first2=G. P. | editor-last3=Besedovsky | editor-first3=H. O. | others=Berczi, I.; Szentivanyi A., series [[Editor-in-chief|EICs]] | title=The Hypothalamus-Pituitary-Adrenal Axis | publisher=Elsevier Science | publication-place=Amsterdam London | series=NeuroImmune Biology | volume=7 | year=2008 | isbn=978-0-08-055936-0 | oclc=272388790 | url=https://books.google.com/books?id=nJSYf879en4C | access-date=27 February 2022 | page= | archive-date=10 August 2023 | archive-url=https://web.archive.org/web/20230810072626/https://books.google.com/books?id=nJSYf879en4C | url-status=live }}</ref> Anatomical connections between brain areas such as the [[amygdala]], [[hippocampus]], [[prefrontal cortex]] and hypothalamus facilitate activation of the HPA axis.<ref>{{Cite book|title=Discovering behavioral neuroscience : an introduction to biological psychology|last=Laura|first=Freberg|others=Freberg, Laura,, Container of (work): Freberg, Laura.|isbn=9781305088702|edition= Third|location=Boston, MA|pages=504|oclc=905734838|date = 2015-01-01}}</ref> Sensory information arriving at the lateral aspect of the [[amygdala]] is processed and conveyed to the amygdala's [[central nucleus]], which then projects out to several parts of the brain involved in responses to fear. At the hypothalamus, fear-signaling impulses activate both the [[sympathetic nervous system]] and the modulating systems of the HPA axis. Increased production of cortisol during stress results in an increased availability of [[glucose]] in order to facilitate [[Fight-or-flight response|fighting or fleeing]]. As well as directly increasing glucose availability, cortisol also suppresses the highly demanding metabolic processes of the [[immune system]], resulting in further availability of glucose.<ref name="isbn_9780444530400"/> Glucocorticoids have many important functions, including modulation of stress reactions, but in excess they can be damaging. [[Atrophy]] of the hippocampus in humans and animals exposed to severe stress is believed to be caused by prolonged exposure to high concentrations of [[glucocorticoid]]s. Deficiencies of the [[hippocampus]] may reduce the memory resources available to help a body formulate appropriate reactions to stress.<ref>{{cite journal |last1=Frankiensztajn |first1=Linoy Mia |last2=Elliott |first2=Evan |last3=Koren |first3=Omry |title=The microbiota and the hypothalamus-pituitary-adrenocortical (HPA) axis, implications for anxiety and stress disorders |journal=Current Opinion in Neurobiology |date=June 2020 |volume=62 |pages=76–82 |doi=10.1016/j.conb.2019.12.003|pmid=31972462 |s2cid=210836469 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)