Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Integer factorization
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Current state of the art == {{See also|Integer factorization records}} Among the {{math|''b''}}-bit numbers, the most difficult to factor in practice using existing algorithms are those [[semiprimes]] whose factors are of similar size. For this reason, these are the integers used in cryptographic applications. In 2019, a 240-digit (795-bit) number ([[RSA-240]]) was factored by a team of researchers including [[Paul Zimmermann (mathematician)|Paul Zimmermann]], utilizing approximately 900 core-years of computing power.<ref>{{cite web| url = https://lists.gforge.inria.fr/pipermail/cado-nfs-discuss/2019-December/001139.html| url-status = dead| archive-url = https://web.archive.org/web/20191202190004/https://lists.gforge.inria.fr/pipermail/cado-nfs-discuss/2019-December/001139.html| archive-date = 2019-12-02| title = [Cado-nfs-discuss] 795-bit factoring and discrete logarithms}}</ref> These researchers estimated that a 1024-bit RSA modulus would take about 500 times as long.<ref name=rsa768>{{cite conference | last1 = Kleinjung | first1 = Thorsten | last2 = Aoki | first2 = Kazumaro | last3 = Franke | first3 = Jens | last4 = Lenstra | first4 = Arjen K. | last5 = Thomé | first5 = Emmanuel | last6 = Bos | first6 = Joppe W. | last7 = Gaudry | first7 = Pierrick | last8 = Kruppa | first8 = Alexander | last9 = Montgomery | first9 = Peter L. | last10 = Osvik | first10 = Dag Arne | last11 = te Riele | first11 = Herman J. J. | last12 = Timofeev | first12 = Andrey | last13 = Zimmermann | first13 = Paul | editor-last = Rabin | editor-first = Tal | contribution = Factorization of a 768-Bit RSA Modulus | contribution-url = https://eprint.iacr.org/2010/006.pdf | doi = 10.1007/978-3-642-14623-7_18 | pages = 333–350 | publisher = Springer | series = Lecture Notes in Computer Science | title = Advances in Cryptology - CRYPTO 2010, 30th Annual Cryptology Conference, Santa Barbara, CA, USA, August 15-19, 2010. Proceedings | volume = 6223 | year = 2010| isbn = 978-3-642-14622-0 }}</ref> The largest such semiprime yet factored was [[RSA numbers#RSA-250|RSA-250]], an 829-bit number with 250 decimal digits, in February 2020. The total computation time was roughly 2700 core-years of computing using Intel [[Skylake (microarchitecture)#Xeon Gold (quad processor)|Xeon Gold]] 6130 at 2.1 GHz. Like all recent factorization records, this factorization was completed with a highly optimized implementation of the [[general number field sieve]] run on hundreds of machines. === Time complexity === No [[algorithm]] has been published that can factor all integers in [[polynomial time]], that is, that can factor a {{math|''b''}}-bit number {{math|''n''}} in time {{math|[[Big O notation|O]](''b''<sup>''k''</sup>)}} for some constant {{math|''k''}}. Neither the existence nor non-existence of such algorithms has been proved, but it is generally suspected that they do not exist.<ref>{{citation |last=Krantz |first=Steven G. |author-link=Steven G. Krantz |doi=10.1007/978-0-387-48744-1 |isbn=978-0-387-48908-7 |location=New York |mr=2789493 |page=203 |publisher=Springer |title=The Proof is in the Pudding: The Changing Nature of Mathematical Proof |url=https://books.google.com/books?id=mMZBtxVZiQoC&pg=PA203 |year=2011}}</ref><ref>{{citation |last1=Arora |first1=Sanjeev |author1-link=Sanjeev Arora |last2=Barak |first2=Boaz |doi=10.1017/CBO9780511804090 |isbn=978-0-521-42426-4 |location=Cambridge |mr=2500087 |page=230 |publisher=Cambridge University Press |title=Computational complexity |url=https://books.google.com/books?id=nGvI7cOuOOQC&pg=PA230 |year=2009|s2cid=215746906 }}</ref> There are published algorithms that are faster than {{math|O((1 + ''ε'')<sup>''b''</sup>)}} for all positive {{math|''ε''}}, that is, [[Time complexity#Sub-exponential time|sub-exponential]]. {{As of|2022}}, the algorithm with best theoretical asymptotic running time is the [[general number field sieve]] (GNFS), first published in 1993,<ref>{{cite book |last1=Buhler |first1=J. P. |last2=Lenstra |first2=H. W. Jr. |last3=Pomerance |first3=Carl |chapter=Factoring integers with the number field sieve |title=The development of the number field sieve |date=1993 |publisher=Springer |isbn=978-3-540-57013-4 |pages=50–94 |doi=10.1007/BFb0091539 |hdl=1887/2149 |series=Lecture Notes in Mathematics |volume=1554 |url=https://doi.org/10.1007/BFb0091539 |access-date=12 March 2021 |language=English}}</ref> running on a {{math|''b''}}-bit number {{math|''n''}} in time: : <math>\exp\left( \left(\left(\tfrac83\right)^\frac23 + o(1)\right)\left(\log n\right)^\frac13\left(\log \log n\right)^\frac23\right).</math> For current computers, GNFS is the best published algorithm for large {{math|''n''}} (more than about 400 bits). For a [[Quantum computing|quantum computer]], however, [[Peter Shor]] discovered an algorithm in 1994 that solves it in polynomial time. [[Shor's algorithm]] takes only {{math|O(''b''<sup>3</sup>)}} time and {{math|O(''b'')}} space on {{math|''b''}}-bit number inputs. In 2001, Shor's algorithm was implemented for the first time, by using [[Nuclear magnetic resonance|NMR]] techniques on molecules that provide seven qubits.<ref> {{cite journal | doi = 10.1038/414883a | title = Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance | journal = [[Nature (journal)|Nature]] | volume = 414 | pages = 883–887 | year = 2001 | last = Vandersypen | first=Lieven M. K. | issue = 6866 | display-authors=etal| arxiv = quant-ph/0112176 | pmid = 11780055 | bibcode = 2001Natur.414..883V | s2cid = 4400832 }}</ref> In order to talk about [[complexity class|complexity classes]] such as P, NP, and co-NP, the problem has to be stated as a [[decision problem]]. {{Math theorem |For every natural numbers <math>n</math> and <math>k</math>, does {{math|''n''}} have a factor smaller than {{math|''k''}} besides 1? |name=Decision problem |note=Integer factorization }} It is known to be in both [[NP (complexity)|NP]] and [[co-NP]], meaning that both "yes" and "no" answers can be verified in polynomial time. An answer of "yes" can be certified by exhibiting a factorization {{math|1=''n'' = ''d''({{sfrac|''n''|''d''}})}} with {{math|''d'' ≤ ''k''}}. An answer of "no" can be certified by exhibiting the factorization of {{math|''n''}} into distinct primes, all larger than {{math|''k''}}; one can verify their primality using the [[AKS primality test]], and then multiply them to obtain {{math|''n''}}. The [[fundamental theorem of arithmetic]] guarantees that there is only one possible string of increasing primes that will be accepted, which shows that the problem is in both [[UP (complexity)|UP]] and co-UP.<ref> {{cite web | author = Lance Fortnow | title = Computational Complexity Blog: Complexity Class of the Week: Factoring | date = 2002-09-13 | url = http://weblog.fortnow.com/2002/09/complexity-class-of-week-factoring.html }}</ref> It is known to be in [[BQP]] because of Shor's algorithm. The problem is suspected to be outside all three of the complexity classes P, NP-complete,<ref>{{citation |last1=Goldreich |first1=Oded |author1-link=Oded Goldreich |last2=Wigderson |first2=Avi |author2-link=Avi Wigderson |editor1-last=Gowers |editor1-first=Timothy |editor1-link=Timothy Gowers |editor2-last=Barrow-Green |editor2-first=June |editor2-link=June Barrow-Green|editor3-last=Leader |editor3-first=Imre |editor3-link=Imre Leader |contribution=IV.20 Computational Complexity |isbn=978-0-691-11880-2 |location=Princeton, New Jersey |mr=2467561 |pages=575–604 |publisher=Princeton University Press |title=The Princeton Companion to Mathematics |year=2008}}. See in particular [https://books.google.com/books?id=ZOfUsvemJDMC&pg=PA583 p. 583].</ref> and [[co-NP-complete]]. It is therefore a candidate for the [[NP-intermediate]] complexity class. In contrast, the decision problem "Is {{math|''n''}} a composite number?" (or equivalently: "Is {{math|''n''}} a prime number?") appears to be much easier than the problem of specifying factors of {{math|''n''}}. The composite/prime problem can be solved in polynomial time (in the number {{math|''b''}} of digits of {{math|''n''}}) with the [[AKS primality test]]. In addition, there are several [[randomized algorithm|probabilistic algorithm]]s that can test primality very quickly in practice if one is willing to accept a vanishingly small possibility of error. The ease of [[primality test]]ing is a crucial part of the [[RSA (algorithm)|RSA]] algorithm, as it is necessary to find large prime numbers to start with.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)