Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Integer programming
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Example== [[File:IP polytope with LP relaxation.svg|350px|thumb|IP polytope with LP relaxation]] The plot on the right shows the following problem. :<math> \begin{align} \underset{x,y \in \mathbb{Z}}{\text{maximize}} \quad & y \\ \text{subject to} \quad &-x +y \leq 1 \\ &3x + 2y \leq 12 \\ &2x + 3y \leq 12 \\ & x,y \ge 0 \end{align} </math> The feasible integer points are shown in red, and the red dashed lines indicate their [[convex hull]], which is the smallest convex polyhedron that contains all of these points. The blue lines together with the coordinate axes define the polyhedron of the LP relaxation, which is given by the inequalities without the integrality constraint. The goal of the optimization is to move the black dashed line as far upward while still touching the polyhedron. The optimal solutions of the integer problem are the points <math>(1,2)</math> and <math>(2,2)</math> that both have an objective value of 2. The unique optimum of the relaxation is <math>(1.8,2.8)</math> with objective value of 2.8. If the solution of the relaxation is rounded to the nearest integers, it is not feasible for the ILP. [[Simplex#Projection onto the standard simplex|See projection into simplex]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)