Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Interpretability logic
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Logic ILM === The language of ILM extends that of classical propositional logic by adding the unary modal operator <math>\Box</math> and the binary modal operator <math>\triangleright</math> (as always, <math>\Diamond p</math> is defined as <math>\neg \Box\neg p</math>). The arithmetical interpretation of <math>\Box p</math> is β<math>p</math> is provable in [[Peano arithmetic]] (PA)β, and <math>p \triangleright q</math> is understood as β<math>PA+q</math> is interpretable in <math>PA+p</math>β. Axiom schemata: # All classical tautologies # <math>\Box(p \rightarrow q) \rightarrow (\Box p \rightarrow \Box q)</math> # <math>\Box(\Box p \rightarrow p) \rightarrow \Box p</math> # <math> \Box (p \rightarrow q) \rightarrow (p \triangleright q)</math> # <math> (p \triangleright q)\rightarrow (\Diamond p \rightarrow \Diamond q) </math> # <math> (p \triangleright q)\wedge (q \triangleright r)\rightarrow (p\triangleright r)</math> # <math> (p \triangleright r)\wedge (q \triangleright r)\rightarrow ((p\vee q)\triangleright r)</math> # <math> \Diamond p \triangleright p </math> # <math> (p \triangleright q)\rightarrow((p\wedge\Box r)\triangleright (q\wedge\Box r)) </math> Rules of inference: # βFrom <math>p</math> and <math>p\rightarrow q</math> conclude <math>q</math>β # βFrom <math>p</math> conclude <math>\Box p</math>β. The completeness of ILM with respect to its arithmetical interpretation was independently proven by Alessandro Berarducci and Vladimir Shavrukov.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)