Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Irreducible polynomial
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Simple examples == The following six polynomials demonstrate some elementary properties of reducible and irreducible polynomials: :<math>\begin{align} p_1(x) &= x^2 + 4x + 4\, = {(x + 2)^2}\\ p_2(x) &= x^2 - 4\, = {(x - 2)(x + 2)}\\ p_3(x) &= 9x^2 - 3\, = 3\left(3x^2 - 1\right)\, = 3\left(x\sqrt{3} - 1\right)\left(x\sqrt{3} + 1\right)\\ p_4(x) &= x^2 - \frac{4}{9}\, = \left(x - \frac{2}{3}\right)\left(x + \frac{2}{3}\right)\\ p_5(x) &= x^2 - 2\, = \left(x - \sqrt{2}\right)\left(x + \sqrt{2}\right)\\ p_6(x) &= x^2 + 1\, = {(x - i)(x + i)} \end{align}</math> Over the [[integer]]s, the first three polynomials are reducible (the third one is reducible because the factor 3 is not invertible in the integers); the last two are irreducible. (The fourth, of course, is not a polynomial over the integers.) Over the [[rational number]]s, the first two and the fourth polynomials are reducible, but the other three polynomials are irreducible (as a polynomial over the rationals, 3 is a [[unit (ring theory)|unit]], and, therefore, does not count as a factor). Over the [[real number]]s, the first five polynomials are reducible, but <math>p_6(x)</math> is irreducible. Over the [[complex number]]s, all six polynomials are reducible.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)