Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Jet bundle
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Jet manifolds== The '''''r''-th jet manifold of Ο''' is the set :<math>J^r (\pi) = \left \{j^r_p\sigma:p \in M, \sigma \in \Gamma(p) \right \}.</math> We may define projections ''Ο<sub>r</sub>'' and ''Ο''<sub>''r'',0</sub> called the '''source and target projections''' respectively, by :<math>\begin{cases} \pi_r: J^r(\pi) \to M \\ j^r_p\sigma \mapsto p \end{cases}, \qquad \begin{cases} \pi_{r, 0}: J^r(\pi) \to E \\ j^r_p\sigma \mapsto \sigma(p) \end{cases}</math> If 1 β€ ''k'' β€ ''r'', then the '''''k''-jet projection''' is the function ''Ο<sub>r,k</sub>'' defined by <math display=block>\begin{cases} \pi_{r, k}: J^r(\pi) \to J^{k}(\pi) \\ j^r_p\sigma \mapsto j^{k}_p\sigma \end{cases}</math> From this definition, it is clear that ''Ο<sub>r</sub>'' = ''Ο'' <small> o </small> ''Ο''<sub>''r'',0</sub> and that if 0 β€ ''m'' β€ ''k'', then ''Ο<sub>r,m</sub>'' = ''Ο<sub>k,m</sub>'' <small> o </small> ''Ο<sub>r,k</sub>''. It is conventional to regard ''Ο<sub>r,r</sub>'' as the [[identity function|identity map]] on ''J <sup>r</sup>''(''Ο'') and to identify ''J'' <sup>0</sup>(''Ο'') with ''E''. The functions ''Ο<sub>r,k</sub>'', ''Ο''<sub>''r'',0</sub> and ''Ο<sub>r</sub>'' are [[Smooth function|smooth]] [[surjective]] [[submersion (mathematics)|submersion]]s. [[File:Jet Bundle Image FbN.png|500px|center]] A [[coordinate system]] on ''E'' will generate a coordinate system on ''J <sup>r</sup>''(''Ο''). Let (''U'', ''u'') be an adapted [[coordinate chart]] on ''E'', where ''u'' = (''x<sup>i</sup>'', ''u<sup>Ξ±</sup>''). The '''induced coordinate chart (''U<sup>r</sup>'', ''u<sup>r</sup>'')''' on ''J <sup>r</sup>''(''Ο'') is defined by <math display=block>\begin{align} U^r &= \left\{j^r_p \sigma: p \in M, \sigma(p) \in U\right\} \\ u^r &= \left(x^i, u^\alpha, u^\alpha_I\right) \end{align}</math> where <math display=block>\begin{align} x^i\left(j^r_p\sigma\right) &= x^i(p) \\ u^\alpha\left(j^r_p\sigma\right) &= u^\alpha(\sigma(p)) \end{align}</math> and the <math>n \left(\binom{m+r}{r} - 1\right)</math> functions known as the '''derivative coordinates''': <math display=block>\begin{cases} u^\alpha_I:U^k \to \mathbf{R} \\ u^\alpha_I\left(j^r_p\sigma\right) = \left.\frac{\partial^{|I|} \sigma^\alpha}{\partial x^I}\right|_p \end{cases}</math> Given an atlas of adapted charts (''U'', ''u'') on ''E'', the corresponding collection of charts (''U <sup>r</sup>'', ''u <sup>r</sup>'') is a [[finite-dimensional]] ''C''<sup>β</sup> atlas on ''J <sup>r</sup>''(''Ο'').
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)