Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Jones calculus
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Jones matrices == Jones calculus is a matrix calculus developed in 1941 by [[Henry Hurwitz Jr.]] and [[R. Clark Jones]] and published in the ''[[Journal of the Optical Society of America]]''.<ref>{{Cite journal |last1= Hurwitz |first1= Henry |last2= Jones |first2= R. Clark |authorlink1=Henry Hurwitz Jr.| date= 1941 |title= A new calculus for the treatment of optical systems, II. Proof of three general equivalence theorems |journal= Journal of the Optical Society of America |volume= 31 |issue= 7 |pages= 493–499 |doi= 10.1364/JOSA.31.000493 |bibcode= 1941JOSA...31..493H }}</ref><ref>{{Cite journal |last= Jones |first= R. Clark |date= 1941 |title= A new calculus for the treatment of optical systems, I. Description and Discussion of the Calculus |journal= Journal of the Optical Society of America |volume= 31 |issue= 7 |pages= 488–493 |doi= 10.1364/JOSA.31.000488 |bibcode= 1941JOSA...31..488J }}</ref><ref>{{Cite journal |last= Jones |first= R. Clark |date= 1941 |title= A new calculus for the treatment of optical systems, III. The Sohncke Theory of optical activity |journal= Journal of the Optical Society of America |volume= 31 |issue= 7 |pages= 500–503 |doi= 10.1364/JOSA.31.000500 |bibcode= 1941JOSA...31..500J }}</ref><ref>{{Cite journal |last= Jones |first= R. Clark |date= 1942 |title= A new calculus for the treatment of optical systems, IV. |journal= Journal of the Optical Society of America |volume= 32 |issue= 8 |pages= 486–493 |doi= 10.1364/JOSA.32.000486 |bibcode= 1942JOSA...32..486C }}</ref> The Jones matrices are operators that act on the Jones vectors defined above. These matrices are implemented by various optical elements such as lenses, beam splitters, mirrors, etc. Each matrix represents projection onto a one-dimensional complex subspace of the Jones vectors. The following table gives examples of Jones matrices for polarizers: {| class="wikitable" style="text-align:center" ! Optical element !! Jones matrix |- | Linear [[polarizer]] with axis of transmission horizontal<ref name="fowles">{{cite book|author=Fowles, G.|title=Introduction to Modern Optics|url=https://archive.org/details/introductiontomo00fowl_441|url-access=limited|edition=2nd|publisher=Dover|date=1989|page=[https://archive.org/details/introductiontomo00fowl_441/page/n44 35]|isbn=9780486659572 }}</ref> || <math>\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}</math> |- | Linear polarizer with axis of transmission vertical<ref name="fowles" /> || <math>\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}</math> |- | Linear polarizer with axis of transmission at Β±45Β° with the horizontal<ref name="fowles" /> || <math>\frac{1}{2} \begin{pmatrix} 1 & \pm 1 \\ \pm 1 & 1 \end{pmatrix}</math> |- | Linear polarizer with axis of transmission angle <math>\theta</math> from the horizontal<ref name="fowles" /> || <math> \begin{pmatrix} \cos^2(\theta) & \cos(\theta)\sin(\theta) \\ \cos(\theta)\sin(\theta) & \sin^2(\theta) \end{pmatrix}</math> |- | Right circular polarizer<ref name="fowles" /> || <math>\frac{1}{2} \begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix}</math> |- | Left circular polarizer<ref name="fowles" /> || <math>\frac{1}{2} \begin{pmatrix} 1 & -i \\ i & 1 \end{pmatrix} </math> |- |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)