Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Knudsen number
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Relationship to Mach and Reynolds numbers in gases== The Knudsen number can be related to the [[Mach number]] and the [[Reynolds number]]. Using the [[dynamic viscosity]] :<math>\mu = \frac{1}{2}\rho \bar{c} \lambda,</math> with the average molecule speed (from [[Maxwell–Boltzmann distribution]]) :<math>\bar{c} = \sqrt{\frac{8 k_\text{B} T}{\pi m}},</math> the [[mean free path]] is determined as follows:<ref name = "thermal">{{cite journal | last1= Dai | first1= W. |display-authors=etal | title= Influence of gas pressure on the effective thermal conductivity of ceramic breeder pebble beds | journal = [[Fusion Engineering and Design]] | year=2017 | volume=118| pages= 45–51|doi= 10.1016/j.fusengdes.2017.03.073 | bibcode= 2017FusED.118...45D }}</ref> :<math>\lambda = \frac{\mu}{\rho} \sqrt{\frac{\pi m}{2 k_\text{B} T}}.</math> Dividing through by ''L'' (some characteristic length), the Knudsen number is obtained: :<math> \mathrm{Kn}\ = \frac{\lambda}{L} = \frac{\mu}{\rho L} \sqrt{\frac{\pi m}{2 k_\text{B} T}},</math> where : <math>\bar{c}</math> is the average molecular speed from the [[Maxwell–Boltzmann distribution]] [L<sup>1</sup> T<sup>−1</sup>], : ''T'' is the [[thermodynamic temperature]] [θ<sup>1</sup>], : ''μ'' is the [[dynamic viscosity]] [M<sup>1</sup> L<sup>−1</sup> T<sup>−1</sup>], : ''m'' is the [[molecular mass]] [M<sup>1</sup>], : ''k<sub>B</sub>'' is the [[Boltzmann constant]] [M<sup>1</sup> L<sup>2</sup> T<sup>−2</sup> θ<sup>−1</sup>], : <math>\rho</math> is the density [M<sup>1</sup> L<sup>−3</sup>]. The dimensionless Mach number can be written as :<math>\mathrm{Ma} = \frac {U_\infty}{c_\text{s}},</math> where the speed of sound is given by :<math>c_\text{s} = \sqrt{\frac{\gamma R T}{M}} = \sqrt{\frac{\gamma k_\text{B}T}{m}},</math> where : ''U<sub>∞</sub>'' is the freestream speed [L<sup>1</sup> T<sup>−1</sup>], : ''R'' is the Universal [[gas constant]] (in [[SI]], 8.314 47215 J K<sup>−1</sup> mol<sup>−1</sup>) [M<sup>1</sup> L<sup>2</sup> T<sup>−2</sup> θ<sup>−1</sup> mol<sup>−1</sup>], : ''M'' is the [[molar mass]] [M<sup>1</sup> mol<sup>−1</sup>], : <math>\gamma</math> is the [[ratio of specific heats]] [1]. The dimensionless [[Reynolds number]] can be written as :<math>\mathrm{Re} = \frac {\rho U_\infty L}{\mu}.</math> Dividing the Mach number by the Reynolds number: :<math>\frac{\mathrm{Ma}}{\mathrm{Re}} = \frac{U_\infty / c_\text{s}}{\rho U_\infty L / \mu} = \frac{\mu}{\rho L c_\text{s}} = \frac{\mu}{\rho L \sqrt{\frac{\gamma k_\text{B} T}{m}}} = \frac{\mu}{\rho L} \sqrt{\frac{m}{\gamma k_\text{B} T}}</math> and by multiplying by <math>\sqrt{\frac{\gamma \pi}{2}}</math> yields the Knudsen number: :<math>\frac{\mu}{\rho L} \sqrt{\frac{m}{\gamma k_\text{B}T}} \sqrt{\frac{\gamma \pi}{2}} = \frac{\mu}{\rho L} \sqrt{\frac{\pi m}{2k_\text{B} T}} = \mathrm{Kn}.</math> The Mach, Reynolds and Knudsen numbers are therefore related by :<math>\mathrm{Kn}\ = \frac{\mathrm{Ma}}{\mathrm{Re}} \sqrt{\frac{\gamma \pi}{2}}.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)