Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
LSZ reduction formula
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==The reduction formula for scalars== The asymptotic relations are all that is needed to obtain the LSZ reduction formula. For future convenience we start with the matrix element: :<math>\mathcal M=\langle \beta\ \mathrm{out}|\mathrm{T}\varphi(y_1)\ldots\varphi(y_n)|\alpha\ \mathrm{in}\rangle </math> which is slightly more general than an ''S''-matrix element. Indeed, <math>\mathcal M</math> is the expectation value of the [[Path-ordering|time-ordered product]] of a number of fields <math>\varphi(y_1)\cdots\varphi(y_n)</math> between an ''out'' state and an ''in'' state. The ''out'' state can contain anything from the vacuum to an undefined number of particles, whose momenta are summarized by the index {{mvar|β}}. The ''in'' state contains at least a particle of momentum {{mvar|p}}, and possibly many others, whose momenta are summarized by the index {{mvar|α}}. If there are no fields in the time-ordered product, then <math>\mathcal M</math> is obviously an ''S''-matrix element. The particle with momentum {{mvar|p}} can be 'extracted' from the ''in'' state by use of a creation operator: :<math> \mathcal M=\sqrt{2\omega_p}\ \left \langle \beta\ \mathrm{out} \bigg| \mathrm T\left[\varphi(y_1)\ldots\varphi(y_n)\right] a_{\mathrm{in}}^\dagger(\mathbf p) \bigg|\alpha'\ \mathrm{in} \right \rangle </math> where the prime on <math>\alpha</math> denotes that one particle has been taken out. With the assumption that no particle with momentum {{mvar|p}} is present in the ''out'' state, that is, we are ignoring forward scattering, we can write: :<math>\mathcal M=\sqrt{2\omega_p}\ \left \langle \beta\ \mathrm{out} \bigg| \left\{ \mathrm T\left[\varphi(y_1)\ldots\varphi(y_n)\right] a_{\mathrm{in}}^\dagger (\mathbf p)- a_{\mathrm{out}}^\dagger(\mathbf p) \mathrm T\left[\varphi(y_1)\ldots\varphi(y_n)\right] \right\} \bigg|\alpha'\ \mathrm{in} \right \rangle</math> because <math>a_{\mathrm{out}}^\dagger</math> acting on the left gives zero. Expressing the construction operators in terms of ''in'' and ''out'' fields, we have: :<math>\mathcal M=-i\sqrt{2\omega_p}\ \int \mathrm{d}^3x f_p(x)\overleftrightarrow{\partial_0} \left\langle \beta\ \mathrm{out} \bigg| \left\{ \mathrm T\left[\varphi(y_1)\ldots\varphi(y_n)\right] \varphi_{\mathrm{in}}(x)- \varphi_{\mathrm{out}}(x) \mathrm T\left[\varphi(y_1)\ldots\varphi(y_n)\right] \right\} \bigg|\alpha'\ \mathrm{in}\right \rangle</math> Now we can use the asymptotic condition to write: :<math>\mathcal M= -i\sqrt{\frac{2\omega_p}{Z}} \left\{ \lim_{x^0\to-\infty} \int \mathrm{d}^3x f_p(x)\overleftrightarrow{\partial_0} \langle \beta\ \mathrm{out}| \mathrm T\left[\varphi(y_1)\ldots\varphi(y_n)\right] \varphi(x) |\alpha'\ \mathrm{in}\rangle-\lim_{x^0\to\infty} \int \mathrm{d}^3x f_p(x)\overleftrightarrow{\partial_0} \langle \beta\ \mathrm{out}| \varphi(x) \mathrm T\left[\varphi(y_1)\ldots\varphi(y_n)\right] |\alpha'\ \mathrm{in}\rangle \right\}</math> Then we notice that the field {{math|''φ''(''x'')}} can be brought inside the time-ordered product, since it appears on the right when {{math|''x''<sup>0</sup> → −∞}} and on the left when {{math|''x''<sup>0</sup> → ∞}}: :<math>\mathcal M=-i\sqrt{\frac{2\omega_p}{Z}} \left(\lim_{x^0\to-\infty}-\lim_{x^0\to \infty}\right) \int \mathrm{d}^3x f_p(x) \overleftrightarrow{\partial_0} \langle \beta\ \mathrm{out}| \mathrm T\left[\varphi(x)\varphi(y_1)\ldots\varphi(y_n)\right] |\alpha'\ \mathrm{in} \rangle </math> In the following, {{mvar|x}} dependence in the time-ordered product is what matters, so we set: :<math>\langle \beta\ \mathrm{out}| \mathrm T\left[\varphi(x)\varphi(y_1)\ldots\varphi(y_n)\right] |\alpha'\ \mathrm{in}\rangle= \eta(x) </math> It can be shown by explicitly carrying out the time integration that:{{refn|group=note|Pulling the operators from time-ordering is not entirely trivial since neither <math>\mathcal \Box+m^2</math> nor <math>\mathcal \int dx^0</math> commutes with time-ordering <math>\mathrm T</math>. When we apply both the differential and the integral operators, however, the problems cancel out and the combined operator commutes with time-ordering.<ref name="Ticciati" />}} :<math> \mathcal M=i\sqrt{\frac{2\omega_p}{Z}} \int \mathrm{d}(x^0)\partial_0 \int \mathrm{d}^3x f_p(x)\overleftrightarrow{\partial_0}\eta(x)</math> so that, by explicit time derivation, we have: :<math>\mathcal M=i\sqrt{\frac{2\omega_p}{Z}} \int \mathrm{d}^4 x\left\{f_p(x)\partial_0^2\eta(x)-\eta(x)\partial_0^2 f_p(x)\right\}</math> By its definition we see that {{math| ''f<sub>p</sub>'' (''x'')}} is a solution of the Klein–Gordon equation, which can be written as: :<math>\partial_0^2f_p(x)=\left(\Delta-m^2\right) f_p(x)</math> Substituting into the expression for <math>\mathcal M</math> and integrating by parts, we arrive at: :<math>\mathcal M=i\sqrt{\frac{2\omega_p}{Z}} \int \mathrm{d}^4 x f_p(x)\left(\partial_0^2-\Delta+m^2\right)\eta(x)</math> That is: :<math> \mathcal M=\frac{i}{(2\pi)^{\frac{3}{2}} Z^{\frac{1}{2}}} \int \mathrm{d}^4 x e^{-ip\cdot x} \left(\Box+m^2\right)\langle \beta\ \mathrm{out}| \mathrm T\left[\varphi(x)\varphi(y_1)\ldots\varphi(y_n)\right] |\alpha'\ \mathrm{in}\rangle</math> Starting from this result, and following the same path another particle can be extracted from the ''in'' state, leading to the insertion of another field in the time-ordered product. A very similar routine can extract particles from the ''out'' state, and the two can be iterated to get vacuum both on right and on left of the time-ordered product, leading to the general formula: :<math>\langle p_1,\ldots,p_n\ \mathrm{out}|q_1,\ldots,q_m\ \mathrm{in}\rangle=\int \prod_{i=1}^{m} \left\{\mathrm{d}^4x_i \frac{i e^{-iq_i\cdot x_i} \left(\Box_{x_i}+m^2\right)}{(2\pi)^{\frac{3}{2}} Z^{\frac{1}{2}}} \right\} \prod_{j=1}^{n} \left\{ \mathrm{d}^4y_j \frac{i e^{ip_j\cdot y_j}\left(\Box_{y_j}+m^2\right)}{(2\pi)^{\frac{3}{2}} Z^{\frac{1}{2}}} \right\} \langle \Omega|\mathrm{T} \varphi(x_1)\ldots\varphi(x_m)\varphi(y_1)\ldots\varphi(y_n)|\Omega\rangle</math> Which is the LSZ reduction formula for Klein–Gordon scalars. It gains a much better looking aspect if it is written using the Fourier transform of the correlation function: :<math> \Gamma \left (p_1,\ldots,p_n \right )=\int \prod_{i=1}^{n} \left\{\mathrm{d}^4x_i e^{i p_i\cdot x_i} \right\} \langle \Omega|\mathrm{T}\ \varphi(x_1)\ldots\varphi(x_n)|\Omega\rangle</math> Using the inverse transform to substitute in the LSZ reduction formula, with some effort, the following result can be obtained: :<math>\langle p_1,\ldots,p_n\ \mathrm{out}|q_1,\ldots,q_m\ \mathrm{in}\rangle= \prod_{i=1}^{m} \left\{-\frac{i\left(p_i^2-m^2\right)}{(2\pi)^{\frac{3}{2}} Z^{\frac{1}{2}}} \right\} \prod_{j=1}^{n} \left\{ -\frac{i\left(q_j^2-m^2\right)}{(2\pi)^{\frac{3}{2}} Z^{\frac{1}{2}}} \right\} \Gamma \left (p_1,\ldots,p_n;-q_1,\ldots,-q_m \right )</math> Leaving aside normalization factors, this formula asserts that ''S''-matrix elements are the residues of the poles that arise in the Fourier transform of the correlation functions as four-momenta are put on-shell.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)