Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Lamb shift
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Derivation == This heuristic derivation of the electrodynamic level shift follows [[Theodore A. Welton]]'s approach.<ref>{{cite book|author1=Marlan Orvil Scully |author2=Muhammad Suhail Zubairy |title=Quantum Optics|year=1997|publisher=Cambridge University Press|location=Cambridge UK|isbn=0-521-43595-1|url=https://books.google.com/books?id=20ISsQCKKmQC&pg=PA430|pages=13β16}}</ref><ref>{{Cite journal|last=Welton|first=Theodore A.|date=1948-11-01|title=Some Observable Effects of the Quantum-Mechanical Fluctuations of the Electromagnetic Field|url=https://link.aps.org/doi/10.1103/PhysRev.74.1157|journal=Physical Review|language=en|volume=74|issue=9|pages=1157β1167|doi=10.1103/PhysRev.74.1157|bibcode=1948PhRv...74.1157W |issn=0031-899X|url-access=subscription}}</ref> The fluctuations in the electric and magnetic fields associated with the [[QED vacuum]] perturbs the [[electric potential]] due to the [[atomic nucleus]]. This [[Perturbation theory (quantum mechanics)|perturbation]] causes a fluctuation in the position of the [[electron]], which explains the energy shift. The difference of [[potential energy]] is given by :<math>\Delta V = V(\vec{r}+\delta \vec{r})-V(\vec{r})=\delta \vec{r} \cdot \nabla V (\vec{r}) + \frac{1}{2} (\delta \vec{r} \cdot \nabla)^2V(\vec{r})+\cdots</math> Since the fluctuations are [[isotropic]], :<math>\langle \delta \vec{r} \rangle _{\rm vac} =0,</math> :<math>\langle (\delta \vec{r} \cdot \nabla )^2 \rangle _{\rm vac} = \frac{1}{3} \langle (\delta \vec{r})^2\rangle _{\rm vac} \nabla ^2.</math> So one can obtain :<math>\langle \Delta V\rangle =\frac{1}{6} \langle (\delta \vec{r})^2\rangle _{\rm vac}\left\langle \nabla ^2\left(\frac{-e^2}{4\pi \epsilon _0r}\right)\right\rangle _{\rm at}.</math> The classical [[equation of motion]] for the electron displacement (''Ξ΄r'')<sub>{{vec|''k''}}</sub> induced by a single mode of the field of [[wave vector]] {{vec|''k''}} and [[frequency]] ''Ξ½'' is :<math>m\frac{d^2}{dt^2} (\delta r)_{\vec{k}}=-eE_{\vec{k}},</math> and this is valid only when the [[frequency]] ''Ξ½'' is greater than ''Ξ½''<sub>0</sub> in the Bohr orbit, <math>\nu > \pi c/a_0</math>. The electron is unable to respond to the fluctuating field if the fluctuations are smaller than the natural orbital frequency in the atom. For the field oscillating at ''Ξ½'', :<math>\delta r(t)\cong \delta r(0)(e^{-i\nu t}+e^{i\nu t}),</math> therefore :<math>(\delta r)_{\vec{k}} \cong \frac{e}{mc^2k^2} E_{\vec{k}}=\frac{e}{mc^2k^2} \mathcal{E} _{\vec{k}} \left (a_{\vec{k}}e^{-i\nu t+i\vec{k}\cdot \vec{r}}+h.c. \right) \qquad \text{with} \qquad \mathcal{E} _{\vec{k}}=\left(\frac{\hbar ck/2}{\epsilon _0 \Omega}\right)^{1/2},</math> where <math>\Omega</math> is some large normalization volume (the volume of the hypothetical "box" containing the hydrogen atom), and <math>h.c.</math> denotes the hermitian conjugate of the preceding term. By the summation over all <math>\vec{k},</math> :<math>\begin{align} \langle (\delta \vec{r} )^2\rangle _{\rm vac} &=\sum_{\vec{k}} \left(\frac{e}{mc^2k^2} \right)^2 \left\langle 0\left |(E_{\vec{k}})^2 \right |0 \right \rangle \\ &=\sum_{\vec{k}} \left(\frac{e}{mc^2k^2} \right)^2\left(\frac{\hbar ck}{2\epsilon _0 \Omega} \right) \\ &=2\frac{\Omega}{(2\pi )^3}4\pi \int dkk^2\left(\frac{e}{mc^2k^2} \right)^2\left(\frac{\hbar ck}{2\epsilon_0 \Omega}\right) && \text{since continuity of } \vec{k} \text{ implies } \sum_{\vec{k}} \to 2 \frac{\Omega}{(2\pi)^3} \int d^3 k \\ &=\frac{1}{2\epsilon_0\pi^2}\left(\frac{e^2}{\hbar c}\right)\left(\frac{\hbar}{mc}\right)^2\int \frac{dk}{k} \end{align}</math> This integral diverges as the wave number approaches zero or infinity. As mentioned above, this method is expected to be valid only when <math>\nu > \pi c/a_0</math>, or equivalently <math>k > \pi/a_0</math>. It is also valid only for wavelengths longer than the [[Compton wavelength]], or equivalently <math>k < mc/\hbar</math>. Therefore, one can choose the upper and lower limit of the integral and these limits make the result converge. :<math>\langle(\delta\vec{r})^2\rangle_{\rm vac}\cong\frac{1}{2\epsilon_0\pi^2}\left(\frac{e^2}{\hbar c}\right)\left(\frac{\hbar}{mc}\right)^2\ln\frac{4\epsilon_0\hbar c}{e^2}</math>. For the [[atomic orbital]] and the [[Coulomb potential]], :<math>\left\langle\nabla^2\left(\frac{-e^2}{4\pi\epsilon_0r}\right)\right\rangle_{\rm at}=\frac{-e^2}{4\pi\epsilon_0}\int d\vec{r}\psi^*(\vec{r})\nabla^2\left(\frac{1}{r}\right)\psi(\vec{r})=\frac{e^2}{\epsilon_0}|\psi(0)|^2,</math> since it is known that :<math>\nabla^2\left(\frac{1}{r}\right)=-4\pi\delta(\vec{r}).</math> For ''p'' orbitals, the nonrelativistic [[wave function]] vanishes at the origin (at the nucleus), so there is no energy shift. But for ''s'' orbitals there is some finite value at the origin, :<math>\psi_{2S}(0)=\frac{1}{(8\pi a_0^3)^{1/2}},</math> where the [[Bohr radius]] is :<math>a_0=\frac{4\pi\epsilon_0\hbar^2}{me^2}.</math> Therefore, :<math>\left\langle\nabla^2\left(\frac{-e^2}{4\pi\epsilon_0r}\right)\right\rangle_{\rm at}=\frac{e^2}{\epsilon_0}|\psi_{2S}(0)|^2=\frac{e^2}{8\pi\epsilon_0a_0^3}</math>. Finally, the difference of the potential energy becomes: :<math>\langle\Delta V\rangle=\frac{4}{3}\frac{e^2}{4\pi\epsilon_0}\frac{e^2}{4\pi\epsilon_0\hbar c}\left(\frac{\hbar}{mc}\right)^2\frac{1}{8\pi a_0^3}\ln\frac{4\epsilon_0\hbar c}{e^2} = \alpha^5 mc^2 \frac{1}{6\pi} \ln\frac{1}{\pi\alpha},</math> where <math>\alpha</math> is the [[fine-structure constant]]. This shift is about 500 MHz, within an order of magnitude of the observed shift of 1057 MHz. This is equal to an energy of only 7.00 x 10^-25 J., or 4.37 x 10^-6 eV. Welton's heuristic derivation of the Lamb shift is similar to, but distinct from, the calculation of the [[Darwin term]] using [[Zitterbewegung]], a contribution to the [[fine structure]] that is of lower order in <math>\alpha</math> than the Lamb shift.<ref>{{cite book|last1=Itzykson |first1=Claude |author-link1=Claude Itzykson |last2=Zuber |first2=Jean-Bernard |author-link2=Jean-Bernard Zuber |title=Quantum Field Theory |publisher=Dover Publications |year=2012 |isbn=9780486134697 |oclc=868270376}}</ref>{{rp|80β81}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)