Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Latent image
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Photographic sensitivity== One very important way to increase photographic sensitivity is to manipulate the electron traps in each crystal. A pure, defect-free crystal exhibits poor photographic sensitivity, since it lacks a shallow electron trap that facilitates the formation of a latent image. In such a case, many of the photoelectrons will recombine with the silver halide crystal and be wasted. Shallow electron traps are created by sulfur sensitization, introduction of a crystalline defect (edge dislocation), and incorporating a trace amount of non-silver salt as a dopant. The location, kind and number of shallow traps have a huge influence on the efficiency by which the photoelectrons create latent image centers, and consequently, on photographic sensitivity. Another important way to increase photographic sensitivity is to reduce the threshold size of developable latent images. Gold sensitization of Koslowski creates metallic gold specks on the crystal surface, which by itself does not render the crystal developable. When a latent image is formed around the gold speck, the presence of gold is known to reduce the number of metallic silver atoms necessary to render the crystal developable. Another important concept in increasing photographic sensitivity is to separate photoholes away from photoelectrons and sensitivity sites. This should reduce the probability of recombination. Reduction sensitization is one possible implementation of this concept. The recent 2-electron sensitization technique is built on this concept. However, the scientific understanding of the behavior of photoholes is more limited than that of photoelectrons. On the other hand, a deep electron trap or a site that facilitates recombination will compete for photoelectrons and therefore reduces the sensitivity. However, these manipulations are used, for example, to enhance contrast of the emulsion.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)