Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Lenstra elliptic-curve factorization
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Explanation== If ''p'' and ''q'' are two prime divisors of ''n'', then {{math|1=''y''<sup>2</sup> = ''x''<sup>3</sup> +}} {{math|1=''ax'' + ''b'' (mod ''n'')}} implies the same equation also {{math|1=modulo ''p''}} and {{math|1=modulo ''q''.}} These two smaller elliptic curves with the <math>\boxplus</math>-addition are now genuine [[group (mathematics)|groups]]. If these groups have ''N''<sub>''p''</sub> and ''N<sub>q</sub>'' elements, respectively, then for any point ''P'' on the original curve, by [[Lagrange's theorem (group theory)|Lagrange's theorem]], {{math|1=''k'' > 0}} is minimal such that <math>kP=\infty</math> on the curve modulo ''p'' implies that ''k'' divides ''N''<sub>''p''</sub>; moreover, <math>N_p P=\infty</math>. The analogous statement holds for the curve modulo ''q''. When the elliptic curve is chosen randomly, then ''N''<sub>''p''</sub> and ''N''<sub>''q''</sub> are random numbers close to {{math|1=''p'' + 1}} and {{math|1=''q'' + 1,}} respectively (see below). Hence it is unlikely that most of the prime factors of ''N''<sub>''p''</sub> and ''N''<sub>''q''</sub> are the same, and it is quite likely that while computing ''eP'', we will encounter some ''kP'' that is ∞ {{math|1=modulo ''p''}} but not {{math|1=modulo ''q'',}} or vice versa. When this is the case, ''kP'' does not exist on the original curve, and in the computations we found some ''v'' with either {{math|1=gcd(''v'',''p'') = ''p''}} or {{math|1=gcd(''v'', ''q'') = ''q'',}} but not both. That is, {{math|1=gcd(''v'', ''n'')}} gave a non-trivial factor {{math|1=of ''n''.}} ECM is at its core an improvement of the older [[Pollard's p − 1 algorithm|{{math|1=''p'' − 1}} algorithm]]. The {{math|1=''p'' − 1}} algorithm finds prime factors ''p'' such that {{math|1=''p'' − 1}} is [[smooth number|b-powersmooth]] for small values of ''b''. For any ''e'', a multiple of {{math|1=''p'' − 1,}} and any ''a'' [[relatively prime]] to ''p'', by [[Fermat's little theorem]] we have {{math|1=''a''<sup>''e''</sup> ≡ 1 ([[modular arithmetic|mod]] ''p'')}}. Then {{math|1=[[greatest common divisor|gcd]](''a''<sup>''e''</sup> − 1, ''n'')}} is likely to produce a factor of ''n''. However, the algorithm fails when {{math|1=''p'' − 1}} has large prime factors, as is the case for numbers containing [[strong prime]]s, for example. ECM gets around this obstacle by considering the [[group (mathematics)|group]] of a random [[elliptic curve]] over the [[finite field]] '''Z'''<sub>''p''</sub>, rather than considering the [[multiplicative group]] of '''Z'''<sub>''p''</sub> which always has order {{math|1=''p'' − 1.}} The order of the group of an elliptic curve over '''Z'''<sub>''p''</sub> varies (quite randomly) between {{math|1=''p'' + 1 − 2{{sqrt|''p''}}}} and {{math|1=''p'' + 1 + 2{{sqrt|''p''}}}} by [[Hasse's theorem on elliptic curves|Hasse's theorem]], and is likely to be smooth for some elliptic curves. Although there is no proof that a smooth group order will be found in the Hasse-interval, by using [[heuristic]] probabilistic methods, the [[Canfield–Erdős–Pomerance theorem]] with suitably optimized parameter choices, and the [[L-notation]], we can expect to try {{math|1='''[[L-notation|L]]'''[{{sqrt|2}}/2, {{sqrt|2}}]}} curves before getting a smooth group order. This heuristic estimate is very reliable in practice.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)