Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Liberal paradox
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Definition=== A particular distribution of goods or outcome of any social process is regarded as ''Pareto-efficient'' if there is no way to improve one or more people's situations without harming another. Put another way, an outcome is not Pareto-efficient if there is a way to improve at least one person's situation without harming anyone else. For example, suppose a mother has ten dollars which she intends to give to her two children Carlos and Shannon. Suppose the children each want only money, and they do not get jealous of one another. The following distributions are Pareto-efficient: {| class="wikitable" ! Carlos ! Shannon |- | $5 | $5 |- | $10 | $0 |- | $2 | $8 |} However, a distribution where the mother gives each of them $2 and wastes the remaining $6 is not Pareto-efficient, because she could have given the wasted money to either child and made that child better off without harming the other. In this example, it was presumed that a child was made better or worse off by gaining or losing money, respectively, and that neither child gained or lost by evaluating her share in comparison to the other. To be more precise, we must evaluate all possible [[utility|preferences]] that the child might have and consider a situation as Pareto-efficient if there is no other social state that at least one person favors (or prefers) and no one disfavors.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)