Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Likelihood function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Discrete probability distribution=== Let <math display="inline">X</math> be a discrete [[random variable]] with [[probability mass function]] <math display="inline">p</math> depending on a parameter <math display="inline">\theta</math>. Then the function <math display="block">\mathcal{L}(\theta \mid x) = p_\theta (x) = P_\theta (X=x), </math> considered as a function of <math display="inline">\theta</math>, is the ''likelihood function'', given the [[Outcome (probability)|outcome]] <math display="inline">x</math> of the random variable <math display="inline">X</math>. Sometimes the probability of "the value <math display="inline">x</math> of <math display="inline">X</math> for the parameter value <math display="inline">\theta</math>{{resize|20%| }}" is written as {{math|''P''(''X'' {{=}} ''x'' {{!}} ''ΞΈ'')}} or {{math|''P''(''X'' {{=}} ''x''; ''ΞΈ'')}}. The likelihood is the probability that a particular outcome <math display="inline">x</math> is observed when the true value of the parameter is <math display="inline">\theta</math>, equivalent to the probability mass on <math display="inline">x</math>; it is ''not'' a probability density over the parameter <math display="inline">\theta</math>. The likelihood, <math display="inline">\mathcal{L}(\theta \mid x) </math>, should not be confused with <math display="inline">P(\theta \mid x)</math>, which is the posterior probability of <math display="inline">\theta</math> given the data <math display="inline">x</math>. ====Example==== [[Image:likelihoodFunctionAfterHH.png|thumb|400px|Figure 1. The likelihood function (<math display="inline">p_\text{H}^2</math>) for the probability of a coin landing heads-up (without prior knowledge of the coin's fairness), given that we have observed HH.]] [[Image:likelihoodFunctionAfterHHT.png|thumb|400px|Figure 2. The likelihood function (<math display="inline">p_\text{H}^2(1-p_\text{H})</math>) for the probability of a coin landing heads-up (without prior knowledge of the coin's fairness), given that we have observed HHT.]] Consider a simple statistical model of a coin flip: a single parameter <math display="inline">p_\text{H}</math> that expresses the "fairness" of the coin. The parameter is the probability that a coin lands heads up ("H") when tossed. <math display="inline">p_\text{H}</math> can take on any value within the range 0.0 to 1.0. For a perfectly [[fair coin]], <math display="inline">p_\text{H} = 0.5</math>. Imagine flipping a fair coin twice, and observing two heads in two tosses ("HH"). Assuming that each successive coin flip is [[Independent and identically distributed random variables|i.i.d.]], then the probability of observing HH is <math display="block">P(\text{HH} \mid p_\text{H}=0.5) = 0.5^2 = 0.25.</math> Equivalently, the likelihood of observing "HH" assuming <math display="inline">p_\text{H} = 0.5</math> is <math display="block">\mathcal{L}(p_\text{H}=0.5 \mid \text{HH}) = 0.25.</math> This is not the same as saying that <math display="inline">P(p_\text{H} = 0.5 \mid HH) = 0.25</math>, a conclusion which could only be reached via [[Bayes' theorem]] given knowledge about the marginal probabilities <math display="inline">P(p_\text{H} = 0.5)</math> and <math display="inline">P(\text{HH})</math>. Now suppose that the coin is not a fair coin, but instead that <math display="inline">p_\text{H} = 0.3</math>. Then the probability of two heads on two flips is <math display="block">P(\text{HH} \mid p_\text{H}=0.3) = 0.3^2 = 0.09.</math> Hence <math display="block">\mathcal{L}(p_\text{H}=0.3 \mid \text{HH}) = 0.09.</math> More generally, for each value of <math display="inline">p_\text{H}</math>, we can calculate the corresponding likelihood. The result of such calculations is displayed in Figure 1. The integral of <math display="inline">\mathcal{L}</math> over [0, 1] is 1/3; likelihoods need not integrate or sum to one over the parameter space.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)