Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Localization (commutative algebra)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Multiplicative set=== Localization is commonly done with respect to a [[multiplicatively closed set]] {{mvar|S}} (also called a ''multiplicative set'' or a ''multiplicative system'') of elements of a ring {{mvar|R}}, that is a subset of {{mvar|R}} that is [[closure (mathematics)|closed]] under multiplication, and contains {{math|1}}. The requirement that {{mvar|S}} must be a multiplicative set is natural, since it implies that all denominators introduced by the localization belong to {{mvar|S}}. The localization by a set {{mvar|U}} that is not multiplicatively closed can also be defined, by taking as possible denominators all products of elements of {{mvar|U}}. However, the same localization is obtained by using the multiplicatively closed set {{mvar|S}} of all products of elements of {{mvar|U}}. As this often makes reasoning and notation simpler, it is standard practice to consider only localizations by multiplicative sets. For example, the localization by a single element {{mvar|s}} introduces fractions of the form <math>\tfrac a s,</math> but also products of such fractions, such as <math>\tfrac {ab} {s^2}.</math> So, the denominators will belong to the multiplicative set <math>\{1, s, s^2, s^3,\ldots\}</math> of the powers of {{mvar|s}}. Therefore, one generally talks of "the localization by the powers of an element" rather than of "the localization by an element". The localization of a ring {{mvar|R}} by a multiplicative set {{mvar|S}} is generally denoted <math>S^{-1}R,</math> but other notations are commonly used in some special cases: if <math>S= \{1, t, t^2,\ldots \}</math> consists of the powers of a single element, <math>S^{-1}R</math> is often denoted <math>R_t;</math> if <math>S=R\setminus \mathfrak p</math> is the [[complement (set theory)|complement]] of a [[prime ideal]] <math>\mathfrak p</math>, then <math>S^{-1}R</math> is denoted <math>R_\mathfrak p.</math> ''In the remainder of this article, only localizations by a multiplicative set are considered.''
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)