Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Log-normal distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Generation and parameters=== Let <math> Z </math> be a [[Normal distribution#Standard normal distribution|standard normal variable]], and let <math>\mu</math> and <math>\sigma</math> be two real numbers, with {{nowrap|<math>\sigma > 0</math>.}} Then, the distribution of the random variable <math display="block"> X = e^{\mu + \sigma Z} </math> is called the log-normal distribution with parameters <math>\mu</math> and {{nowrap|<math>\sigma</math>.}} These are the [[expected value]] (or [[mean]]) and [[standard deviation]] of the variable's natural [[logarithm]], {{nowrap|<math>\ln X </math>,}} ''not'' the expectation and standard deviation of <math> X </math> itself. [[File:Lognormal Distribution.svg|thumb|upright=1.5|Relation between normal and log-normal distribution. If <math> Y = \mu + \sigma Z </math> is normally distributed, then <math> X \sim e^Y </math> is log-normally distributed.]] This relationship is true regardless of the base of the logarithmic or exponential function: If <math>\log_a X </math> is normally distributed, then so is <math>\log_b X </math> for any two positive numbers {{nowrap|<math> a, b \neq 1</math>.}} Likewise, if <math> e^Y </math> is log-normally distributed, then so is {{nowrap|<math> a^Y </math>,}} where {{nowrap|<math>0 < a \neq 1</math>.}} In order to produce a distribution with desired mean <math>\mu_X</math> and variance {{nowrap|<math> \sigma_X^2</math>,}} one uses <math> \mu = \ln \frac{ \mu_X^2 }{ \sqrt{ \mu_X^2 + \sigma_X^2 } } </math> and {{nowrap|<math> \sigma^2 = \ln\left( 1 + \frac{ \sigma_X^2 }{ \mu_X^2 } \right) </math>.}} Alternatively, the "multiplicative" or "geometric" parameters <math> \mu^* = e^\mu </math> and <math> \sigma^* = e^\sigma </math> can be used. They have a more direct interpretation: <math> \mu^* </math> is the '''''[[median]]''''' of the distribution, and <math> \sigma^* </math> is useful for determining "scatter" intervals, see below.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)