Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Mandelstam variables
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Sum== Note that :<math>s + t + u = \left(m_1c^2\right)^2 + \left(m_2c^2\right)^2 + \left(m_3c^2\right)^2 + \left(m_4c^2\right)^2</math> where ''m''<sub>''i''</sub> is the mass of particle ''i''.<ref>{{cite book |last=Griffiths |first=David |author-link=David J. Griffiths |year=2008 |title=Introduction to Elementary Particles |edition=2nd |publisher=[[Wiley-VCH]] |isbn=978-3-527-40601-2 |page=113}}</ref> {{Collapse top|title=Proof|collapse=no}} To prove this, we need to use two facts: :*The square of a particle's four momentum is the square of its mass, ::<math>p_i^2 = \left(m_ic\right)^2 \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad (1)</math> :*And conservation of four-momentum, ::<math>p_1 + p_2 = p_3 + p_4</math> ::<math>p_1 = -p_2 + p_3 + p_4 \quad \quad \quad \quad \quad \quad \,\, (2)</math> So, to begin, ::<math>s /c^2 =(p_1+p_2)^2 =p_1^2 + p_2^2 + 2p_1 \cdot p_2</math> ::<math>t /c^2 =(p_1-p_3)^2=p_1^2 + p_3^2 - 2p_1 \cdot p_3</math> ::<math>u /c^2 =(p_1-p_4)^2=p_1^2 + p_4^2 - 2p_1 \cdot p_4</math> Then adding the three while inserting squared masses leads to, ::<math>(s+t+u)/c^2=\left(m_1c\right)^2 + \left(m_2c\right)^2 + \left(m_3c\right)^2 + \left(m_4c\right)^2 + 2 p_1^2 + 2p_1 \cdot p_2 - 2p_1 \cdot p_3 - 2p_1 \cdot p_4</math> Then note that the last four terms add up to zero using conservation of four-momentum, ::<math>2 p_1^2 + 2p_1 \cdot p_2 - 2p_1 \cdot p_3 - 2p_1 \cdot p_4 = 2p_1 \cdot (p_1 + p_2 - p_3 - p_4) = 0</math> So finally, :<math>(s+t+u)/c^2 = \left(m_1c\right)^2 + \left(m_2c\right)^2 + \left(m_3c\right)^2 + \left(m_4c\right)^2</math>. {{Collapse bottom|}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)