Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Markov decision process
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Optimization objective=== The goal in a Markov decision process is to find a good "policy" for the decision maker: a function <math>\pi</math> that specifies the action <math>\pi(s)</math> that the decision maker will choose when in state <math>s</math>. Once a Markov decision process is combined with a policy in this way, this fixes the action for each state and the resulting combination behaves like a [[Markov chain]] (since the action chosen in state <math>s</math> is completely determined by <math>\pi(s)</math>). The objective is to choose a policy <math>\pi</math> that will maximize some cumulative function of the random rewards, typically the expected discounted sum over a potentially infinite horizon: :<math>E\left[\sum^{\infty}_{t=0} {\gamma^t R_{a_t} (s_t, s_{t+1})}\right] </math> (where we choose <math>a_t = \pi(s_t)</math>, i.e. actions given by the policy). And the expectation is taken over <math>s_{t+1} \sim P_{a_t}(s_t,s_{t+1})</math> where <math>\ \gamma \ </math> is the discount factor satisfying <math>0 \le\ \gamma\ \le\ 1</math>, which is usually close to <math>1</math> (for example, <math> \gamma = 1/(1+r) </math> for some discount rate <math>r</math>). A lower discount factor motivates the decision maker to favor taking actions early, rather than postpone them indefinitely. Another possible, but strictly related, objective that is commonly used is the <math>H-</math>step return. This time, instead of using a discount factor <math>\ \gamma \ </math>, the agent is interested only in the first <math>H</math> steps of the process, with each reward having the same weight. :<math>E\left[\sum^{H-1}_{t=0} {R_{a_t} (s_t, s_{t+1})}\right] </math> (where we choose <math>a_t = \pi(s_t)</math>, i.e. actions given by the policy). And the expectation is taken over <math>s_{t+1} \sim P_{a_t}(s_t,s_{t+1})</math> where <math>\ H \ </math> is the time horizon. Compared to the previous objective, the latter one is more used in [[Learning Theory]]. A policy that maximizes the function above is called an ''<dfn>optimal policy</dfn>'' and is usually denoted <math>\pi^*</math>. A particular MDP may have multiple distinct optimal policies. Because of the [[Markov property]], it can be shown that the optimal policy is a function of the current state, as assumed above.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)