Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Matrix norm
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Matrix norms induced by vector norms== {{Main|Operator norm}} Suppose a [[vector norm]] <math>\|\cdot\|_{\alpha}</math> on <math>K^n</math> and a vector norm <math>\|\cdot\|_{\beta}</math> on <math>K^m</math> are given. Any <math>m \times n</math> matrix {{mvar|A}} induces a linear operator from <math>K^n</math> to <math>K^m</math> with respect to the standard basis, and one defines the corresponding ''induced norm'' or ''[[operator norm]]'' or ''subordinate norm'' on the space <math>K^{m \times n}</math> of all <math>m \times n</math> matrices as follows: <math display="block"> \|A\|_{\alpha, \beta} = \sup\{ \|Ax\|_\beta : x \in K^n \text{ such that } \|x\|_\alpha \leq 1 \} </math> where <math> \sup </math> denotes the [[Infimum and supremum|supremum]]. This norm measures how much the mapping induced by <math>A</math> can stretch vectors. Depending on the vector norms <math>\|\cdot\|_{\alpha}</math>, <math>\|\cdot\|_{\beta}</math> used, notation other than <math>\|\cdot\|_{\alpha,\beta}</math> can be used for the operator norm. ===Matrix norms induced by vector ''p''-norms=== If the [[Vector norm#p-norm|''p''-norm for vectors]] (<math>1 \leq p \leq \infty</math>) is used for both spaces <math>K^n</math> and <math>K^m,</math> then the corresponding operator norm is:<ref name=":1" /> <math display="block"> \|A\|_p = \sup \{ \|Ax\|_p : x \in K^n \text{ such that } \|x\|_p \leq 1 \}. </math> These induced norms are different from the [[#"Entry-wise" matrix norms|"entry-wise"]] ''p''-norms and the [[Schatten norm|Schatten ''p''-norms]] for matrices treated below, which are also usually denoted by <math> \|A\|_p .</math> Geometrically speaking, one can imagine a ''p''-norm unit ball <math>V_{p, n} = \{x\in K^n : \|x\|_p \le 1 \}</math> in <math>K^n</math>, then apply the linear map <math>A</math> to the ball. It would end up becoming a distorted convex shape <math>AV_{p, n} \subset K^m</math>, and <math> \|A\|_p </math> measures the longest "radius" of the distorted convex shape. In other words, we must take a ''p''-norm unit ball <math>V_{p, m}</math> in <math>K^m</math>, then multiply it by at least <math> \|A\|_p </math>, in order for it to be large enough to contain <math>AV_{p, n}</math>. ==== ''p'' = 1 or ∞ ==== When <math>\ p = 1\ ,</math> or <math>\ p = \infty\ ,</math> we have simple formulas. :<math display="block"> \|A\|_1 = \max_{1 \leq j \leq n} \sum_{i=1}^m \left| a_{ij} \right|\ ,</math> which is simply the maximum absolute column sum of the matrix. <math display="block"> \|A\|_\infty = \max_{1 \leq i \leq m} \sum _{j=1}^n \left| a_{ij} \right|\ ,</math> which is simply the maximum absolute row sum of the matrix. For example, for <math display="block">A = \begin{bmatrix} -3 & 5 & 7 \\ ~~2 & 6 & 4 \\ ~~0 & 2 & 8 \\ \end{bmatrix}\ ,</math> we have that <math display="block">\|A\|_1 = \max\bigl\{\ |{-3}|+2+0\ ,~ 5+6+2\ ,~ 7+4+8\ \bigr\} = \max\bigl\{\ 5\ ,~ 13\ ,~ 19\ \bigr\} = 19\ ,</math> <math display="block">\|A\|_\infty = \max\bigl\{\ |{-3}|+5+7\ ,~ 2+6+4\ ,~ 0+2+8\ \bigr\} = \max\bigl\{\ 15\ ,~ 12\ ,~ 10\ \bigr\} = 15 ~.</math> ==== Spectral norm (''p'' = 2) ==== {{anchor|Spectral norm}} When <math>p = 2</math> (the [[Euclidean norm]] or <math>\ell_2</math>-norm for vectors), the induced matrix norm is the ''spectral norm''. The two values do ''not'' coincide in infinite dimensions — see [[Spectral radius]] for further discussion. The spectral radius should not be confused with the spectral norm. The spectral norm of a matrix <math>A</math> is the largest [[singular value]] of <math>A</math>, i.e., the square root of the largest [[eigenvalue]] of the matrix <math>A^*A,</math> where <math>A^*</math> denotes the [[conjugate transpose]] of <math>A</math>:<ref>Carl D. Meyer, Matrix Analysis and Applied Linear Algebra, §5.2, p.281, Society for Industrial & Applied Mathematics, June 2000.</ref><math display="block"> \|A\|_2 = \sqrt{\lambda_{\max}\left(A^* A\right)} = \sigma_{\max}(A).</math>where <math>\sigma_{\max}(A)</math> represents the largest singular value of matrix <math>A.</math> There are further properties: * <math display="inline">\|A \|_2 = \sup\{x^* A y : x \in K^m, y \in K^n \text{ with }\|x\|_2 = \|y\|_2 = 1\}.</math> Proved by the [[Cauchy–Schwarz inequality]]. * <math display="inline"> \| A^* A\|_2 = \| A A^* \|_2 = \|A\|_2^2</math>. Proven by [[singular value decomposition]] (SVD) on <math>A</math>. * <math display="inline"> \|A\| _2 = \sigma_{\mathrm{max}}(A) \leq \|A\|_{\rm F} = \sqrt{\sum_i \sigma_{i}(A)^2}</math>, where <math>\|A\|_\textrm{F}</math> is the [[#Frobenius norm|Frobenius norm]]. Equality holds if and only if the matrix <math>A</math> is a rank-one matrix or a zero matrix. * Conversely, <math>\|A\|_\textrm{F} \leq \min(m,n)^{1/2}\|A\|_2</math>. * <math> \|A\|_2 = \sqrt{\rho(A^{*}A)}\leq\sqrt{\|A^{*}A\|_\infty}\leq\sqrt{\|A\|_1\|A\|_\infty} </math>. ===Matrix norms induced by vector ''α''- and ''β''-norms=== We can generalize the above definition. Suppose we have vector norms <math>\|\cdot\|_{\alpha}</math> and <math>\|\cdot\|_{\beta}</math> for spaces <math>K^n</math> and <math>K^m</math> respectively; the corresponding operator norm is <math display="block"> \|A\|_{\alpha, \beta} = \sup\{ \|Ax\|_\beta : x \in K^n \text{ such that } \|x\|_\alpha \leq 1 \} </math> In particular, the <math>\|A\|_{p}</math> defined previously is the special case of <math>\|A\|_{p, p}</math>. In the special cases of <math>\alpha = 2</math> and <math>\beta=\infty</math>, the induced matrix norms can be computed by<math display="block"> \|A\|_{2,\infty}= \max_{1\le i\le m}\|A_{i:}\|_2, </math> where <math>A_{i:}</math> is the i-th row of matrix <math> A </math>. In the special cases of <math>\alpha = 1</math> and <math>\beta=2</math>, the induced matrix norms can be computed by<math display="block"> \|A\|_{1, 2} = \max_{1\le j\le n}\|A_{:j}\|_2, </math> where <math>A_{:j}</math> is the j-th column of matrix <math> A </math>. Hence, <math> \|A\|_{2,\infty} </math> and <math> \|A\|_{1, 2} </math> are the maximum row and column 2-norm of the matrix, respectively. ===Properties=== Any operator norm is [[#Consistent and compatible norms|consistent]] with the vector norms that induce it, giving <math display="block">\|Ax\|_\beta \leq \|A\|_{\alpha,\beta}\|x\|_\alpha.</math> Suppose <math>\|\cdot\|_{\alpha,\beta}</math>; <math>\|\cdot\|_{\beta,\gamma}</math>; and <math>\|\cdot\|_{\alpha,\gamma}</math> are operator norms induced by the respective pairs of vector norms <math>(\|\cdot\|_\alpha, \|\cdot\|_\beta)</math>; <math>(\|\cdot\|_\beta, \|\cdot\|_{\gamma})</math>; and <math>(\|\cdot\|_\alpha, \|\cdot\|_\gamma)</math>. Then, :<math>\|AB\|_{\alpha,\gamma} \leq \|A\|_{\beta, \gamma} \|B\|_{\alpha, \beta} ;</math> this follows from <math display="block">\|ABx\|_\gamma \leq \|A\|_{\beta, \gamma} \|Bx\|_\beta \leq \|A\|_{\beta, \gamma} \|B\|_{\alpha, \beta} \|x\|_\alpha </math> and <math display="block">\sup_{\|x\|_\alpha = 1} \|ABx \|_\gamma = \|AB\|_{\alpha, \gamma} .</math> ===Square matrices=== Suppose <math>\|\cdot\|_{\alpha, \alpha}</math> is an operator norm on the space of square matrices <math>K^{n \times n}</math> induced by vector norms <math>\|\cdot\|_{\alpha}</math> and <math>\|\cdot\|_\alpha</math>. Then, the operator norm is a sub-multiplicative matrix norm: <math display="block">\|AB\|_{\alpha, \alpha} \leq \|A\|_{\alpha, \alpha} \|B\|_{\alpha, \alpha}.</math> Moreover, any such norm satisfies the inequality {{NumBlk||<math display="block">(\|A^r\|_{\alpha, \alpha})^{1/r} \ge \rho(A) </math> | {{EquationRef|1}}}} for all positive integers ''r'', where {{math|''ρ''(''A'')}} is the [[spectral radius]] of {{mvar|A}}. For [[Symmetric matrix|symmetric]] or [[Hermitian matrix|hermitian]] {{mvar|A}}, we have equality in ({{EquationNote|1}}) for the 2-norm, since in this case the 2-norm ''is'' precisely the spectral radius of {{mvar|A}}. For an arbitrary matrix, we may not have equality for any norm; a counterexample would be <math display="block">A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix},</math> which has vanishing spectral radius. In any case, for any matrix norm, we have the [[Spectral radius#Gelfand's formula|spectral radius formula]]: <math display="block">\lim_{r\to\infty}\|A^r\|^{1/r}=\rho(A). </math> ===Energy norms=== If the vector norms <math>\|\cdot\|_{\alpha}</math> and <math>\|\cdot\|_{\beta}</math> are given in terms of [[Norm_(mathematics)#Energy_norm|energy norms]] based on [[Symmetric_matrix|symmetric]] [[Definite_matrix|positive definite]] matrices <math>P</math> and <math>Q</math> respectively, the resulting operator norm is given as <math display="block"> \|A\|_{P, Q} = \sup \{ \|Ax\|_Q : \|x\|_P \leq 1 \}. </math> Using the symmetric [[Square_root_of_a_matrix|matrix square roots]] of <math>P</math> and <math>Q</math> respectively, the operator norm can be expressed as the spectral norm of a modified matrix: <math display="block"> \|A\|_{P, Q} = \|Q^{1/2} A P^{-1/2}\|_{2}. </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)