Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Michelson–Morley experiment
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== 1881 and 1887 experiments == === Michelson experiment (1881) === [[File:Michelson1881c.png|thumb|300px|Michelson's 1881 [[interferometer]]. Although ultimately it proved incapable of distinguishing between differing theories of [[luminiferous aether|aether]]-dragging, its construction provided important lessons for the design of Michelson and Morley's 1887 instrument.<ref group=note>Among other lessons was the need to control for vibration. Michelson (1881) wrote: "... owing to the extreme sensitiveness of the instrument to vibrations, the work could not be carried on during the day. Next, the experiment was tried at night. When the mirrors were placed half-way on the arms the fringes were visible, but their position could not be measured till after twelve o'clock, and then only at intervals. When the mirrors were moved out to the ends of the arms, the fringes were only occasionally visible. It thus appeared that the experiments could not be performed in Berlin, and the apparatus was accordingly removed to the Astrophysicalisches Observatorium in Potsdam ... Here, the fringes under ordinary circumstances were sufficiently quiet to measure, but so extraordinarily sensitive was the instrument that the stamping of the pavement, about 100 meters from the observatory, made the fringes disappear entirely!"</ref>]] {{Wikisource|The Relative Motion of the Earth and the Luminiferous Ether|The Relative Motion of the Earth and the Luminiferous Ether (1881)}} Michelson had a solution to the problem of how to construct a device sufficiently accurate to detect aether flow. In 1877, while teaching at his alma mater, the [[United States Naval Academy]] in Annapolis, Michelson conducted his first known light speed experiments as a part of a classroom demonstration. In 1881, he left active U.S. Naval service while in Germany concluding his studies. In that year, Michelson used a prototype experimental device to make several more measurements. The device he designed, later known as a [[Michelson interferometer]], sent [[yellow]] light from a [[sodium]] flame (for alignment), or [[white]] light (for the actual observations), through a [[beam splitter|half-silvered mirror]] that was used to split it into two beams traveling at right angles to one another. After leaving the splitter, the beams traveled out to the ends of long arms where they were reflected back into the middle by small mirrors. They then recombined on the far side of the splitter in an eyepiece, producing a pattern of constructive and destructive [[Interference (wave propagation)|interference]] whose transverse displacement would depend on the relative time it takes light to transit the longitudinal ''vs.'' the transverse arms. If the Earth is traveling through an aether medium, a light beam traveling parallel to the flow of that aether will take longer to reflect back and forth than would a beam traveling perpendicular to the aether, because the increase in elapsed time from traveling against the aether wind is more than the time saved by traveling with the aether wind. Michelson expected that the Earth's motion would produce a [[fringe shift]] equal to 0.04 fringes—that is, of the separation between areas of the same intensity. He did not observe the expected shift; the greatest average deviation that he measured (in the northwest direction) was only 0.018 fringes; most of his measurements were much less. His conclusion was that Fresnel's hypothesis of a stationary aether with partial aether dragging would have to be rejected, and thus he confirmed Stokes' hypothesis of complete aether dragging.<ref name=michel1/> However, [[Alfred Potier]] (and later [[Hendrik Lorentz]]) pointed out to Michelson that he had made an error of calculation, and that the expected fringe shift should have been only 0.02 fringes. Michelson's apparatus was subject to experimental errors far too large to say anything conclusive about the aether wind. Definitive measurement of the aether wind would require an experiment with greater accuracy and better controls than the original. Nevertheless, the prototype was successful in demonstrating that the basic method was feasible.<ref group=A name=Jan /><ref group=A name=AIMiller /> === Michelson–Morley experiment (1887) === {{Wikisource|On the Relative Motion of the Earth and the Luminiferous Ether|On the Relative Motion of the Earth and the Luminiferous Ether (1887)}} [[Image:On the Relative Motion of the Earth and the Luminiferous Ether - Fig 4.png|300px|thumb|right|This diagram illustrates the folded light path used in the Michelson–Morley interferometer that enabled a path length of 11 m. ''a'' is the light source, an [[oil lamp]]. ''b'' is a [[beam splitter]]. ''c'' is a compensating plate so that both the reflected and transmitted beams travel through the same amount of glass (important since experiments were run with white light which has an extremely short [[coherence length]] requiring precise matching of optical path lengths for [[interference fringe|fringes]] to be visible; monochromatic sodium light was used only for initial alignment<ref name=michel1/><ref group=note>Michelson (1881) wrote: "... a sodium flame placed at ''a'' produced at once the interference bands. These could then be altered in width, position, or direction, by a slight movement of the plate ''b'', and when they were of convenient width and of maximum sharpness, the sodium flame was removed and the lamp again substituted. The screw ''m'' was then slowly turned till the bands reappeared. They were then of course colored, except the central band, which was nearly black."</ref>). ''d'', ''d' '' and ''e'' are mirrors. ''e' '' is a fine adjustment mirror. ''f'' is a [[telescope]].]] In 1885, Michelson began a collaboration with [[Edward Morley]], spending considerable time and money to confirm with higher accuracy [[Fizeau experiment|Fizeau's 1851 experiment]] on Fresnel's drag coefficient,<ref name=michel1a /> to improve on Michelson's 1881 experiment,<ref name=michel2 /> and to establish the wavelength of light as a [[Length measurement|standard of length]].<ref name=michel3 /><ref name=michel4 /> John Brashear made the high-quality optics for the Interferometer in his [[Allegheny Observatory|Allegheny-Observatory]]-affiliated shop. At this time Michelson was professor of physics at the Case School of Applied Science, and Morley was professor of chemistry at Western Reserve University (WRU), which shared a campus with the Case School on the eastern edge of Cleveland. Michelson suffered a mental health crisis in September 1885, from which he recovered by October 1885. Morley ascribed this breakdown to the intense work of Michelson during the preparation of the experiments. In 1886, Michelson and Morley successfully confirmed Fresnel's drag coefficient – this result was also considered as a confirmation of the stationary aether concept.<ref group=A name=staley /> This result strengthened their hope of finding the aether wind. Michelson and Morley created an improved version of the Michelson experiment with more than enough accuracy to detect this hypothetical effect. The experiment was performed in several periods of concentrated observations between April and July 1887, in the basement of Adelbert Dormitory of WRU (later renamed Pierce Hall, demolished in 1962).<ref group=A name=Fickinger /><ref group=A name=hamerla /> As shown in the diagram to the right, the light was repeatedly reflected back and forth along the arms of the interferometer, increasing the path length to {{Convert|11|m|abbr = on}}. At this length, the drift would be about 0.4 fringes. To make that easily detectable, the apparatus was assembled in a closed room in the basement of the heavy stone dormitory, eliminating most thermal and vibrational effects. Vibrations were further reduced by building the apparatus on top of a large block of sandstone (Fig. 1), about a foot thick and {{convert|5|ft|spell=in}} square, which was then floated in a circular trough of mercury. They estimated that effects of about 0.01 fringe would be detectable. [[File:MichelsonCoinAirLumiereBlanche.JPG|thumb|[[Interference fringe|Fringe pattern]] produced with a Michelson interferometer using [[white light]]. As configured here, the central fringe is white rather than black.]] Michelson and Morley and other early experimentalists using interferometric techniques in an attempt to measure the properties of the luminiferous aether, used (partially) monochromatic light only for initially setting up their equipment, always switching to white light for the actual measurements. The reason is that measurements were recorded visually. Purely monochromatic light would result in a uniform fringe pattern. Lacking modern means of [[air conditioning|environmental temperature control]], experimentalists struggled with continual fringe drift even when the interferometer was set up in a basement. Because the fringes would occasionally disappear due to vibrations caused by passing horse traffic, distant thunderstorms and the like, an observer could easily "get lost" when the fringes returned to visibility. The advantages of white light, which produced a distinctive colored fringe pattern, far outweighed the difficulties of aligning the apparatus due to its low [[coherence length]]. As [[Dayton Miller]] wrote, "White light fringes were chosen for the observations because they consist of a small group of fringes having a central, sharply defined black fringe which forms a permanent zero reference mark for all readings."<ref group=A name=Miller1933/><ref group=note>If one uses a half-silvered mirror as the beam splitter, the reflected beam will undergo a different number of front-surface reflections than the transmitted beam. At each front-surface reflection, the light will undergo a phase inversion. Because the two beams undergo a different number of phase inversions, when the path lengths of the two beams match or differ by an integral number of wavelengths (e.g. 0, 1, 2 ...), there will be destructive interference and a weak signal at the detector. If the path lengths of the beams differ by a half-integral number of wavelengths (e.g., 0.5, 1.5, 2.5 ...), constructive interference will yield a strong signal. The results are opposite if a cube beam-splitter is used, because a cube beam-splitter makes no distinction between a front- and rear-surface reflection.</ref> Use of partially monochromatic light (yellow sodium light) during initial alignment enabled the researchers to locate the position of equal path length, more or less easily, before switching to white light.<ref group=note>Sodium light produces a fringe pattern that displays cycles of fuzziness and sharpness that repeat every several hundred fringes over a distance of approximately a millimeter. This pattern is due to the yellow sodium D line being actually a doublet, the individual lines of which have a limited [[coherence length]]. After aligning the interferometer to display the centermost portion of the sharpest set of fringes, the researcher would switch to white light.</ref> The mercury trough allowed the device to turn with close to zero friction, so that once having given the sandstone block a single push it would slowly rotate through the entire range of possible angles to the "aether wind", while measurements were continuously observed by looking through the eyepiece. The hypothesis of aether drift implies that because one of the arms would inevitably turn into the direction of the wind at the same time that another arm was turning perpendicularly to the wind, an effect should be noticeable even over a period of minutes. The expectation was that the effect would be graphable as a sine wave with two peaks and two troughs per rotation of the device. This result could have been expected because during each full rotation, each arm would be parallel to the wind twice (facing into and away from the wind giving identical readings) and perpendicular to the wind twice. Additionally, due to the Earth's rotation, the wind would be expected to show periodic changes in direction and magnitude during the course of a [[sidereal day]]. Because of the motion of the Earth around the Sun, the measured data were also expected to show annual variations. === Most famous "failed" experiment === [[File:Michelson Morley 1887 Figure 6.png|thumb|300px|Michelson and Morley's results. The upper solid line is the curve for their observations at noon, and the lower solid line is that for their evening observations. Note that the theoretical curves and the observed curves are not plotted at the same scale: the dotted curves, in fact, represent only one-eighth of the theoretical displacements.]] After all this thought and preparation, the experiment became what has been called the most famous failed experiment in history.<ref group=A name=blum /> Instead of providing insight into the properties of the aether, Michelson and Morley's article in the ''[[American Journal of Science]]'' reported the measurement to be as small as one-fortieth of the expected displacement (Fig. 7), but "since the displacement is proportional to the square of the velocity" they concluded that the measured velocity was "probably less than one-sixth" of the expected velocity of the Earth's motion in orbit and "certainly less than one-fourth".<ref name=michel2 /> Although this small "velocity" was measured, it was considered far too small to be used as evidence of speed relative to the aether, and it was understood to be within the range of an experimental error that would allow the speed to actually be zero.<ref group=A name=staley /> For instance, Michelson wrote about the "decidedly negative result" in a letter to [[Lord Rayleigh]] in August 1887:<ref group=A name=shankland2 /> {{Quote|The Experiments on the relative motion of the earth and ether have been completed and the result decidedly negative. The expected deviation of the interference fringes from the zero should have been 0.40 of a fringe – the maximum displacement was 0.02 and the average much less than 0.01 – and then not in the right place. As displacement is proportional to squares of the relative velocities it follows that if the ether does slip past the relative velocity is less than one sixth of the earth’s velocity.}} From the standpoint of the then current aether models, the experimental results were conflicting. The [[Fizeau experiment]] and its 1886 repetition by Michelson and Morley apparently confirmed the stationary aether with partial aether dragging, and refuted complete aether dragging. On the other hand, the much more precise Michelson–Morley experiment (1887) apparently confirmed complete aether dragging and refuted the stationary aether.<ref group=A name=Jan /> In addition, the Michelson–Morley [[null result]] was further substantiated by the null results of other second-order experiments of different kind, namely the [[Trouton–Noble experiment]] (1903) and the [[experiments of Rayleigh and Brace]] (1902–1904). These problems and their solution led to the development of the [[Lorentz transformation]] and [[special relativity]]. After the "failed" experiment Michelson and Morley ceased their aether drift measurements and started to use their newly developed technique to establish the wavelength of light as a [[Length measurement|standard of length]].<ref name=michel3 /><ref name=michel4 />
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)