Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Mirror image
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===In two dimensions=== {{Main|Reflectional symmetry}} In [[geometry]], the mirror image of an object or [[2D geometric model|two-dimensional figure]] is the [[virtual image]] formed by [[reflection (mathematics)|reflection]] in a [[plane mirror]]; it is of the same size as the original object, yet different, unless the object or figure has [[reflection symmetry]] (also known as a [[P-symmetry]]). Two-dimensional mirror images can be seen in the reflections of mirrors or other reflecting surfaces, or on a printed surface seen inside-out. If we first look at an object that is effectively two-dimensional (such as the writing on a card) and then turn the card to face a mirror, the object turns through an angle of 180Β° and we see a left-right reversal in the mirror. In this example, it is the change in orientation rather than the mirror itself that causes the observed reversal. Another example is when we stand with our backs to the mirror and face an object that is in front of the mirror. Then we compare the object with its reflection by turning ourselves 180Β°, towards the mirror. Again we perceive a left-right reversal due to a change in our orientation. So, in these examples the mirror does not actually cause the observed reversals.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)