Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Molecular engineering
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Applications== Molecular design has been an important element of many disciplines in academia, including bioengineering, chemical engineering, electrical engineering, materials science, mechanical engineering and chemistry. However, one of the ongoing challenges is in bringing together the critical mass of manpower amongst disciplines to span the realm from design theory to materials production, and from device design to product development. Thus, while the concept of rational engineering of technology from the bottom-up is not new, it is still far from being widely translated into R&D efforts. Molecular engineering is used in many industries. Some applications of technologies where molecular engineering plays a critical role: === Consumer Products === * Antibiotic surfaces (e.g. incorporation of [[silver nanoparticles]] or antibacterial peptides into coatings to prevent microbial infection)<ref>{{Cite journal|last1=Gallo|first1=Jiri|last2=Holinka|first2=Martin|last3=Moucha|first3=Calin S.|date=2014-08-11|title=Antibacterial Surface Treatment for Orthopaedic Implants|journal=International Journal of Molecular Sciences|language=en|volume=15|issue=8|pages=13849–13880|doi=10.3390/ijms150813849|pmid=25116685|pmc=4159828|doi-access=free }}</ref> * [[Cosmetics]] (e.g. rheological modification with small molecules and surfactants in shampoo) * Cleaning products (e.g. [[Silver nanoparticle|nanosilver]] in laundry detergent) * Consumer electronics (e.g. [[organic light-emitting diode]] displays (OLED)) * [[Electrochromic devices|Electrochromic]] windows (e.g. windows in the [[Boeing 787 Dreamliner]]) * Zero emission vehicles (e.g. advanced [[fuel cell]]s/batteries) * Self-cleaning surfaces (e.g. super [[Superhydrophobic coating|hydrophobic surface coatings]]) === [[Energy harvesting|Energy Harvesting]] and [[Energy storage|Storage]] === * [[Flow battery|Flow batteries]] - Synthesizing molecules for high-energy density electrolytes and highly-selective membranes in grid-scale energy storage systems.<ref>{{Cite journal|last1=Huang|first1=Jinhua|last2=Su|first2=Liang|last3=Kowalski|first3=Jeffrey A.|last4=Barton|first4=John L.|last5=Ferrandon|first5=Magali|last6=Burrell|first6=Anthony K.|last7=Brushett|first7=Fikile R.|last8=Zhang|first8=Lu|date=2015-07-14|title=A subtractive approach to molecular engineering of dimethoxybenzene-based redox materials for non-aqueous flow batteries|journal=J. Mater. Chem. A|language=en|volume=3|issue=29|pages=14971–14976|doi=10.1039/c5ta02380g|issn=2050-7496}}</ref> * [[Lithium-ion battery|Lithium-ion batteries]] - Creating new molecules for use as electrode binders,<ref>{{Cite journal|last1=Wu|first1=Mingyan|last2=Xiao|first2=Xingcheng|last3=Vukmirovic|first3=Nenad|last4=Xun|first4=Shidi|last5=Das|first5=Prodip K.|last6=Song|first6=Xiangyun|last7=Olalde-Velasco|first7=Paul|last8=Wang|first8=Dongdong|last9=Weber|first9=Adam Z.|date=2013-07-31|title=Toward an Ideal Polymer Binder Design for High-Capacity Battery Anodes|journal=Journal of the American Chemical Society|language=EN|volume=135|issue=32|pages=12048–12056|doi=10.1021/ja4054465|pmid=23855781|s2cid=12715155 |url=http://www.escholarship.org/uc/item/4vm90145}}</ref><ref>{{Cite journal|last1=Choi|first1=Jaecheol|last2=Kim|first2=Kyuman|last3=Jeong|first3=Jiseon|last4=Cho|first4=Kuk Young|last5=Ryou|first5=Myung-Hyun|last6=Lee|first6=Yong Min|date=2015-06-30|title=Highly Adhesive and Soluble Copolyimide Binder: Improving the Long-Term Cycle Life of Silicon Anodes in Lithium-Ion Batteries|journal=ACS Applied Materials & Interfaces|language=EN|volume=7|issue=27|pages=14851–14858|doi=10.1021/acsami.5b03364|pmid=26075943}}</ref> electrolytes,<ref>{{Cite journal|last1=Tan|first1=Shi|last2=Ji|first2=Ya J.|last3=Zhang|first3=Zhong R.|last4=Yang|first4=Yong|date=2014-07-21|title=Recent Progress in Research on High-Voltage Electrolytes for Lithium-Ion Batteries|journal=ChemPhysChem|language=en|volume=15|issue=10|pages=1956–1969|doi=10.1002/cphc.201402175|pmid=25044525|issn=1439-7641}}</ref> electrolyte additives,<ref>{{Cite journal|last1=Zhu|first1=Ye|last2=Li|first2=Yan|last3=Bettge|first3=Martin|last4=Abraham|first4=Daniel P.|date=2012-01-01|title=Positive Electrode Passivation by LiDFOB Electrolyte Additive in High-Capacity Lithium-Ion Cells|journal=Journal of the Electrochemical Society|language=en|volume=159|issue=12|pages=A2109–A2117|doi=10.1149/2.083212jes|issn=0013-4651}}</ref> or even for energy storage directly<ref>{{Cite web|url=http://www.printedelectronicsworld.com/articles/560/new-laminar-batteries|title=New Laminar Batteries {{!}} Printed Electronics World|date=2007-05-18|access-date=2016-08-06}}</ref><ref>{{Cite journal|last1=Nokami|first1=Toshiki|last2=Matsuo|first2=Takahiro|last3=Inatomi|first3=Yuu|last4=Hojo|first4=Nobuhiko|last5=Tsukagoshi|first5=Takafumi|last6=Yoshizawa|first6=Hiroshi|last7=Shimizu|first7=Akihiro|last8=Kuramoto|first8=Hiroki|last9=Komae|first9=Kazutomo|date=2012-11-20|title=Polymer-Bound Pyrene-4,5,9,10-tetraone for Fast-Charge and -Discharge Lithium-Ion Batteries with High Capacity|journal=Journal of the American Chemical Society|language=EN|volume=134|issue=48|pages=19694–19700|doi=10.1021/ja306663g|pmid=23130634}}</ref><ref>{{Cite journal|last1=Liang|first1=Yanliang|last2=Chen|first2=Zhihua|last3=Jing|first3=Yan|last4=Rong|first4=Yaoguang|last5=Facchetti|first5=Antonio|last6=Yao|first6=Yan|date=2015-04-11|title=Heavily n-Dopable π-Conjugated Redox Polymers with Ultrafast Energy Storage Capability|journal=Journal of the American Chemical Society|language=EN|volume=137|issue=15|pages=4956–4959|doi=10.1021/jacs.5b02290|pmid=25826124|doi-access=free}}</ref> in order to improve energy density (using materials such as [[graphene]], silicon [[nanorod]]s, and [[Lithium metal battery|lithium metal]]), power density, cycle life, and safety. * [[Solar cell]]s - Developing new materials for more efficient and cost-effective solar cells including [[Organic solar cell|organic]], [[Quantum dot solar cell|quantum dot]] or [[Perovskite solar cell|perovskite]]-based [[photovoltaics]]. * [[Photocatalytic water splitting]] - Enhancing the production of hydrogen fuel using solar energy and advanced catalytic materials such as [[semiconductor nanoparticles]] === Environmental Engineering === * [[Desalination|Water desalination]] (e.g. new membranes for highly-efficient low-cost ion removal)<ref>{{Cite journal|last1=Surwade|first1=Sumedh P.|last2=Smirnov|first2=Sergei N.|last3=Vlassiouk|first3=Ivan V.|last4=Unocic|first4=Raymond R.|last5=Veith|first5=Gabriel M.|last6=Dai|first6=Sheng|last7=Mahurin|first7=Shannon M.|title=Water desalination using nanoporous single-layer graphene|journal=Nature Nanotechnology|volume=10|issue=5|pages=459–464|doi=10.1038/nnano.2015.37|pmid=25799521|bibcode=2015NatNa..10..459S|year=2015|osti=1185491}}</ref> * Soil remediation (e.g. catalytic nanoparticles that accelerate the degradation of long-lived soil contaminants such as chlorinated organic compounds)<ref>{{Cite journal|last1=He|first1=Feng|last2=Zhao|first2=Dongye|last3=Paul|first3=Chris|date=2010-04-01|title=Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones|journal=Water Research|volume=44|issue=7|pages=2360–2370|doi=10.1016/j.watres.2009.12.041|pmid=20106501|bibcode=2010WatRe..44.2360H }}</ref> * [[Carbon sequestration]] (e.g. new materials for CO<sub>2</sub> adsorption)<ref>{{Cite web|url=http://cen.acs.org/articles/93/web/2015/12/Better-Carbon-Capture-Through-Chemistry.html|title=Better Carbon Capture Through Chemistry {{!}} Chemical & Engineering News|last=Pelley|first=Janet|website=cen.acs.org|access-date=2016-08-06}}</ref> === [[Immunotherapy]] === * Peptide-based vaccines (e.g. [[amphiphilic]] peptide macromolecular assemblies induce a robust immune response)<ref>{{Cite journal|last1=Black|first1=Matthew|last2=Trent|first2=Amanda|last3=Kostenko|first3=Yulia|last4=Lee|first4=Joseph Saeyong|last5=Olive|first5=Colleen|last6=Tirrell|first6=Matthew|date=2012-07-24|title=Self-Assembled Peptide Amphiphile Micelles Containing a Cytotoxic T-Cell Epitope Promote a Protective Immune Response In Vivo|journal=Advanced Materials|language=en|volume=24|issue=28|pages=3845–3849|doi=10.1002/adma.201200209|pmid=22550019|bibcode=2012AdM....24.3845B |s2cid=205244562 |issn=1521-4095}}</ref> *Peptide-containing biopharmaceuticals (e.g. [[nanoparticles]], [[liposomes]], [[polyelectrolyte]] [[micelle]]s as delivery vehicles)<ref>{{Cite journal|last1=Acar|first1=Handan|last2=Ting|first2=Jeffrey M.|last3=Srivastava|first3=Samanvaya|last4=LaBelle|first4=James L.|last5=Tirrell|first5=Matthew V.|date=2017|title=Molecular engineering solutions for therapeutic peptide delivery|journal=Chemical Society Reviews|language=en|volume=46|issue=21|pages=6553–6569|doi=10.1039/C7CS00536A|pmid=28902203|issn=0306-0012}}</ref> === [[Synthetic biology|Synthetic Biology]] === * [[CRISPR]] - Faster and more efficient gene editing technique * [[Gene delivery]]/[[gene therapy]] - Designing molecules to deliver modified or new genes into cells of live organisms to cure genetic disorders * [[Metabolic engineering]] - Modifying metabolism of organisms to optimize production of chemicals (e.g. [[Synthetic Genomics|synthetic genomics]]) * [[Protein engineering]] - Altering structure of existing proteins to enable specific new functions, or the creation of fully artificial proteins *DNA-functionalized materials - 3D assemblies of DNA-conjugated nanoparticle lattices<ref>{{Cite journal|last1=Lequieu|first1=Joshua|last2=Córdoba|first2=Andrés|last3=Hinckley|first3=Daniel|last4=de Pablo|first4=Juan J.|date=2016-08-17|title=Mechanical Response of DNA–Nanoparticle Crystals to Controlled Deformation|journal=ACS Central Science|language=EN|volume=2|issue=9|pages=614–620|doi=10.1021/acscentsci.6b00170|issn=2374-7943|pmc=5043426|pmid=27725959}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)