Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Moment-generating function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Examples== Here are some examples of the moment-generating function and the characteristic function for comparison. It can be seen that the characteristic function is a [[Wick rotation]] of the moment-generating function <math>M_X(t)</math> when the latter exists. {|class="wikitable" style="padding-left:1.5em;" |- ! Distribution ! Moment-generating function <math>M_X(t)</math> ! Characteristic function <math>\varphi (t)</math> |- |[[Degenerate distribution|Degenerate]] <math>\delta_a</math> |<math>e^{ta}</math> |<math>e^{ita}</math> |- | [[Bernoulli distribution|Bernoulli]] <math>P(X = 1) = p</math> | <math>1 - p + pe^t</math> | <math>1 - p + pe^{it}</math> |- | [[Binomial distribution|Binomial]] <math>B(n, p)</math> | <math>\left(1 - p + pe^t\right)^n</math> | <math>\left(1 - p + pe^{it}\right)^n</math> |- | [[Geometric distribution|Geometric]] <math>(1 - p)^{k}\,p</math> | <math>\frac{p}{1 - (1 - p) e^t}, ~ t < -\ln(1 - p)</math> | <math>\frac{p}{1 - (1 - p)\,e^{it}}</math> |- |[[Negative binomial distribution|Negative binomial]] <math>\operatorname{NB}(r, p)</math> |<math>\left(\frac{p}{1 - e^t + pe^t}\right)^r, ~ t<-\ln(1-p)</math> |<math>\left(\frac{p}{1 - e^{it} + pe^{it}}\right)^r</math> |- | [[Poisson distribution|Poisson]] <math>\operatorname{Pois}(\lambda)</math> | <math>e^{\lambda(e^t - 1)}</math> | <math>e^{\lambda(e^{it} - 1)}</math> |- | [[Uniform distribution (continuous)|Uniform (continuous)]] <math>\operatorname U(a, b)</math> | <math>\frac{e^{tb} - e^{ta}}{t(b - a)}</math> | <math>\frac{e^{itb} - e^{ita}}{it(b - a)}</math> |- | [[Discrete uniform distribution|Uniform (discrete)]] <math>\operatorname{DU}(a, b)</math> | <math>\frac{e^{at} - e^{(b + 1)t}}{(b - a + 1)(1 - e^t)}</math> | <math>\frac{e^{ait} - e^{(b + 1)it}}{(b - a + 1)(1 - e^{it})}</math> |- |[[Laplace distribution|Laplace]] <math>L(\mu, b)</math> |<math>\frac{e^{t\mu}}{1 - b^2t^2}, ~ |t| < 1/b</math> |<math>\frac{e^{it\mu}}{1 + b^2t^2}</math> |- | [[Normal distribution|Normal]] <math>N(\mu, \sigma^2)</math> | <math>e^{t\mu + \sigma^2 t^2 / 2}</math> | <math>e^{it\mu - \sigma^2 t^2 / 2}</math> |- | [[Chi-squared distribution|Chi-squared]] <math>\chi^2_k</math> | <math>{\left(1 - 2t\right)}^{-k/2}, ~ t < 1/2</math> | <math>{\left(1 - 2it\right)}^{-{k}/{2}}</math> |- |[[Noncentral chi-squared distribution|Noncentral chi-squared]] <math>\chi^2_k(\lambda)</math> | <math>e^{\lambda t/(1-2t)} {\left(1 - 2t\right)}^{-k/2}</math> | <math>e^{i\lambda t/(1-2it)} {\left(1 - 2it\right)}^{-k/2}</math> |- | [[Gamma distribution|Gamma]] <math>\Gamma(k, \tfrac{1}{\theta})</math> |<math>{\left(1 - t\theta\right)}^{-k}, ~ t < \tfrac{1}{\theta}</math> | <math>{\left(1 - it\theta\right)}^{-k}</math> |- | [[Exponential distribution|Exponential]] <math>\operatorname{Exp}(\lambda)</math> | <math>\left(1 - t\lambda^{-1}\right)^{-1}, ~ t < \lambda</math> | <math>\left(1 - it\lambda^{-1}\right)^{-1}</math> |- |[[Beta distribution|Beta]] |<math>1 +\sum_{k=1}^{\infty} \left( \prod_{r=0}^{k-1} \frac{\alpha+r}{\alpha+\beta+r} \right) \frac{t^k}{k!}</math> |<math>{}_1F_1(\alpha; \alpha+\beta; i\,t)\! </math> (see [[Confluent hypergeometric function]]) |- | [[Multivariate normal distribution|Multivariate normal]] <math>N(\mathbf{\mu}, \mathbf{\Sigma})</math> |<math>\exp\left[\mathbf{t}^\mathrm{T} \left( \boldsymbol{\mu} + \tfrac{1}{2} \boldsymbol{\Sigma} \mathbf{t}\right)\right]</math> |<math>\exp\left[\mathbf{t}^\mathrm{T} \left(i \boldsymbol{\mu} - \tfrac{1}{2} \boldsymbol{\Sigma} \mathbf{t}\right)\right]</math> |- | [[Cauchy distribution|Cauchy]] <math>\operatorname{Cauchy}(\mu, \theta)</math> |[[Indeterminate form|Does not exist]] | <math>e^{it\mu - \theta|t|}</math> |- |[[Multivariate Cauchy distribution|Multivariate Cauchy]] <math>\operatorname{MultiCauchy}(\mu, \Sigma)</math><ref>Kotz et al.{{full citation needed|date=December 2019}} p. 37 using 1 as the number of degree of freedom to recover the Cauchy distribution</ref> |Does not exist |<math>\exp\left(i\mathbf{t}^{\mathrm{T}}\boldsymbol\mu - \sqrt{\mathbf{t}^{\mathrm{T}}\boldsymbol{\Sigma} \mathbf{t}}\right)</math> |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)