Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Mrs. Miniver's problem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Solution== The problem can be solved by cutting the lune along the [[line segment]] between the two crossing points of the circles, into two [[circular segment]]s, and using the formula for the area of a circular segment to relate the distance between the crossing points to the total area that the problem requires the lune to have. This gives a [[transcendental equation]] for the distance between crossing points but it can be solved numerically.{{r|ingenious|icons}} There are two boundary conditions whose distances between centers can be readily solved: the farthest apart the centers can be is when the circles have equal radii, and the closest they can be is when one circle is contained completely within the other, which happens when the ratio between radii is <math>\sqrt2</math>. If the ratio of radii falls beyond these limiting cases, the circles cannot satisfy the problem's area constraint.{{r|icons}} In the case of two circles of equal size, these equations can be simplified somewhat. The [[rhombus]] formed by the two circle centers and the two crossing points, with side lengths equal to the radius, has an angle <math>\theta\approx 2.605</math> radians at the circle centers, found by solving the equation <math display=block>\theta-\sin\theta=\frac{2\pi}{3},</math> from which it follows that the ratio of the distance between their centers to their radius is <math>2\cos\tfrac\theta2\approx0.529864</math>.{{r|icons}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)