Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Multi-index notation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Some applications== The multi-index notation allows the extension of many formulae from elementary calculus to the corresponding multi-variable case. Below are some examples. In all the following, <math>x,y,h\in\Complex^n</math> (or <math>\R^n</math>), <math>\alpha,\nu\in\N_0^n</math>, and <math>f,g,a_\alpha\colon\Complex^n\to\Complex</math> (or <math>\R^n\to\R</math>). ;[[Multinomial theorem]] :<math> \left( \sum_{i=1}^n x_i\right)^k = \sum_{|\alpha|=k} \binom{k}{\alpha} \, x^\alpha</math> ;[[Multi-binomial theorem]] :<math display="block"> (x+y)^\alpha = \sum_{\nu \le \alpha} \binom{\alpha}{\nu} \, x^\nu y^{\alpha - \nu}.</math> Note that, since {{math|''x'' + ''y''}} is a vector and {{math|''Ξ±''}} is a multi-index, the expression on the left is short for {{math|(''x''<sub>1</sub> + ''y''<sub>1</sub>)<sup>''Ξ±''<sub>1</sub></sup>β―(''x''<sub>''n''</sub> + ''y''<sub>''n''</sub>)<sup>''Ξ±''<sub>''n''</sub></sup>}}. ;[[Leibniz rule (generalized product rule)|Leibniz formula]] :For smooth functions <math display="inline">f</math> and <math display="inline">g</math>,<math display="block">\partial^\alpha(fg) = \sum_{\nu \le \alpha} \binom{\alpha}{\nu} \, \partial^{\nu}f\,\partial^{\alpha-\nu}g.</math> ;[[Taylor series]] :For an [[analytic function]] <math display="inline">f</math> in ''<math display="inline">n</math>'' variables one has <math display="block">f(x+h) = \sum_{\alpha\in\mathbb{N}^n_0} {\frac{\partial^{\alpha}f(x)}{\alpha !}h^\alpha}.</math> In fact, for a smooth enough function, we have the similar '''Taylor expansion''' <math display="block">f(x+h) = \sum_{|\alpha| \le n}{\frac{\partial^{\alpha}f(x)}{\alpha !}h^\alpha}+R_{n}(x,h),</math> where the last term (the remainder) depends on the exact version of Taylor's formula. For instance, for the Cauchy formula (with integral remainder), one gets <math display="block">R_n(x,h)= (n+1) \sum_{|\alpha| =n+1}\frac{h^\alpha}{\alpha !} \int_0^1(1-t)^n\partial^\alpha f(x+th) \, dt.</math> ;General linear [[partial differential operator]] :A formal linear <math display="inline">N</math>-th order partial differential operator in <math display="inline">n</math> variables is written as <math display="block">P(\partial) = \sum_{|\alpha| \le N} {a_{\alpha}(x)\partial^{\alpha}}.</math> ;[[Integration by parts]] :For smooth functions with [[compact support]] in a bounded domain <math>\Omega \subset \R^n</math> one has <math display="block">\int_{\Omega} u(\partial^{\alpha}v) \, dx = (-1)^{|\alpha|} \int_{\Omega} {(\partial^{\alpha}u)v\,dx}.</math> This formula is used for the definition of [[Distribution (mathematics)|distribution]]s and [[weak derivative]]s.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)