Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Multivariable calculus
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Limits == A study of [[limit of a function|limits]] and [[continuous function|continuity]] in multivariable calculus yields many counterintuitive results not demonstrated by single-variable functions. A limit along a path may be defined by considering a parametrised path <math>s(t): \mathbb{R} \to \mathbb{R}^n</math> in n-dimensional Euclidean space. Any function <math>f(\overrightarrow{x}): \mathbb{R}^n \to \mathbb{R}^m</math> can then be projected on the path as a 1D function <math>f(s(t))</math>. The limit of <math>f</math> to the point <math>s(t_0)</math> along the path <math>s(t)</math> can hence be defined as {{NumBlk|:|<math>\lim_{\overrightarrow{x} \to s(t_0)} f(\overrightarrow{x}) = \lim_{t \to t_0} f(s(t))</math>|{{EquationRef|1}}}} Note that the value of this limit can be dependent on the form of <math>s(t)</math>, i.e. the path chosen, not just the point which the limit approaches.<ref name="CourantJohn1999"/>{{rp|19β22}} For example, consider the function :<math>f(x,y) = \frac{x^2y}{x^4+y^2}.</math> If the point <math>(0,0)</math> is approached through the line <math>y=kx</math>, or in parametric form: [[File:((x^2)(y))β((x^4)+(y^2)).png|thumb|Plot of the function {{math|''f''(''x'', ''y'') {{=}} (''x''Β²y)/(''x''{{sup|4}} + ''y''{{sup|2}})}}]] {{NumBlk|:|<math>x(t) = t,\, y(t) = kt</math>|{{EquationRef|2}}}} Then the limit along the path will be: {{NumBlk|:|<math>\lim_{t \to 0} f(x(t),y(t)) = \lim_{t \to 0} \frac{k t^3}{t^4 + k^2 t^2} = 0</math>|{{EquationRef|3}}}} On the other hand, if the path <math>y=\pm x^2</math> (or parametrically, <math>x(t)=t,\, y(t)=\pm t^2</math>) is chosen, then the limit becomes: {{NumBlk|:|<math>\lim_{t \to 0} f(x(t),y(t)) = \lim_{t \to 0} \frac{\pm t^4}{t^4 + t^4} = \pm \frac{1}{2}</math>|{{EquationRef|4}}}} Since taking different paths towards the same point yields different values, a general limit at the point <math>(0,0)</math> cannot be defined for the function. A general limit can be defined if the limits to a point along all possible paths converge to the same value, i.e. we say for a function <math>f: \mathbb{R}^n \to \mathbb{R}^m</math> that the limit of <math>f</math> to some point <math>x_0 \in \mathbb{R}^n</math> is L, if and only if {{NumBlk|:|<math>\lim_{t \to t_0} f(s(t)) = L</math>|{{EquationRef|5}}}} for all continuous functions <math>s(t): \mathbb{R} \to \mathbb{R}^n</math> such that <math>s(t_0)=x_0</math>. === Continuity === From the concept of limit along a path, we can then derive the definition for multivariate continuity in the same manner, that is: we say for a function <math>f: \mathbb{R}^n \to \mathbb{R}^m</math> that <math>f</math> is continuous at the point <math>x_0</math>, if and only if {{NumBlk|:|<math>\lim_{t \to t_0} f(s(t)) = f(x_0)</math>|{{EquationRef|5}}}} for all continuous functions <math>s(t): \mathbb{R} \to \mathbb{R}^n</math> such that <math>s(t_0)=x_0</math>. As with limits, being continuous along ''one'' path <math>s(t)</math> does not imply multivariate continuity. Continuity in each argument not being sufficient for multivariate continuity can also be seen from the following example.<ref name="CourantJohn1999" />{{rp|17β19}} For example, for a real-valued function <math>f: \mathbb{R}^2 \to \mathbb{R}</math> with two real-valued parameters, <math>f(x,y)</math>, continuity of <math>f</math> in <math>x</math> for fixed <math>y</math> and continuity of <math>f</math> in <math>y</math> for fixed <math>x</math> does not imply continuity of <math>f</math>. Consider :<math> f(x,y)= \begin{cases} \frac{y}{x}-y & \text{if}\quad 0 \leq y < x \leq 1 \\ \frac{x}{y}-x & \text{if}\quad 0 \leq x < y \leq 1 \\ 1-x & \text{if}\quad 0 < x=y \\ 0 & \text{everywhere else}. \end{cases} </math> It is easy to verify that this function is zero by definition on the boundary and outside of the quadrangle <math>(0,1)\times (0,1)</math>. Furthermore, the functions defined for constant <math>x</math> and <math>y</math> and <math>0 \le a \le 1</math> by :<math>g_a(x) = f(x,a)\quad</math> and <math>\quad h_a(y) = f(a,y)\quad</math> are continuous. Specifically, :<math>g_0(x) = f(x,0) = h_0(0,y) = f(0,y) = 0</math> for all {{mvar|x}} and {{mvar|y}}. Therefore, <math>f(0,0)=0</math> and moreover, along the coordinate axes, <math>\lim_{x \to 0} f(x,0) = 0</math> and <math>\lim_{y \to 0} f(0,y) = 0</math>. Therefore the function is continuous along both individual arguments. However, consider the parametric path <math>x(t) = t,\, y(t) = t</math>. The parametric function becomes {{NumBlk|:|<math> f(x(t),y(t))= \begin{cases} 1-t & \text{if}\quad t > 0 \\ 0 & \text{everywhere else}. \end{cases} </math>|{{EquationRef|6}}}} Therefore, {{NumBlk|:|<math>\lim_{t \to 0^+} f(x(t),y(t)) = 1 \neq f(0,0) = 0</math>|{{EquationRef|7}}}} It is hence clear that the function is not multivariate continuous, despite being continuous in both coordinates. ===Theorems regarding multivariate limits and continuity === * All properties of linearity and superposition from single-variable calculus carry over to multivariate calculus. * '''Composition''': If <math>f: \mathbb{R}^n \to \mathbb{R}^m</math> and <math>g: \mathbb{R}^m \to \mathbb{R}^p</math> are both multivariate continuous functions at the points <math>x_0 \in \mathbb{R}^n</math> and <math>f(x_0) \in \mathbb{R}^m</math> respectively, then <math>g \circ f: \mathbb{R}^n \to \mathbb{R}^p</math> is also a multivariate continuous function at the point <math>x_0</math>. * '''Multiplication''': If <math>f: \mathbb{R}^n \to \mathbb{R}</math> and <math>g: \mathbb{R}^n \to \mathbb{R}</math> are both continuous functions at the point <math>x_0 \in \mathbb{R}^n</math>, then <math>fg: \mathbb{R}^n \to \mathbb{R}</math> is continuous at <math>x_0</math>, and <math>f/g : \mathbb{R}^n \to \mathbb{R}</math> is also continuous at <math>x_0</math> provided that <math>g(x_0) \neq 0</math>. * If <math>f: \mathbb{R}^n \to \mathbb{R}</math> is a continuous function at point <math>x_0 \in \mathbb{R}^n</math>, then <math>|f|</math> is also continuous at the same point. * If <math>f: \mathbb{R}^n \to \mathbb{R}^m</math> is [[Lipschitz continuous]] (with the appropriate normed spaces as needed) in the neighbourhood of the point <math>x_0 \in \mathbb{R}^n</math>, then <math>f</math> is multivariate continuous at <math>x_0</math>. {{Collapse top|Proof|expand=true}} From the Lipschitz continuity condition for <math>f</math> we have {{NumBlk|:|<math>|f(s(t))-f(s(t_0))| \leq K|s(t)-s(t_0)|</math>|{{EquationRef|8}}}} where <math>K</math> is the Lipschitz constant. Note also that, as <math>s(t)</math> is continuous at <math>t_0</math>, for every <math>\delta > 0</math> there exists a <math>\epsilon > 0</math> such that <math>|s(t)-s(t_0)| < \delta</math> <math>\forall |t-t_0| < \epsilon</math>. Hence, for every <math>\alpha > 0</math>, choose <math>\delta = \frac{\alpha}{K}</math>; there exists an <math>\epsilon > 0</math> such that for all <math>t</math> satisfying <math>|t-t_0| < \epsilon</math>, <math>|s(t)-s(t_0)| < \delta</math>, and <math>|f(s(t)) - f(s(t_0))| \leq K|s(t)-s(t_0)| < K\delta = \alpha</math>. Hence <math>\lim_{t \to t_0} f(s(t))</math> converges to <math>f(s(t_0))</math> regardless of the precise form of <math>s(t)</math>. {{Collapse bottom}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)