Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Nash embedding theorems
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==''C''<sup>''k''</sup> embedding theorem== The technical statement appearing in Nash's original paper is as follows: if ''M'' is a given ''m''-dimensional Riemannian manifold (analytic or of class ''C<sup>k</sup>'', 3 ≤ ''k'' ≤ ∞), then there exists a number ''n'' (with ''n'' ≤ ''m''(3''m''+11)/2 if ''M'' is a compact manifold, and with ''n'' ≤ ''m''(''m''+1)(3''m''+11)/2 if ''M'' is a non-compact manifold) and an [[isometric embedding]] ƒ: ''M'' → '''R'''<sup>''n''</sup> (also analytic or of class ''C<sup>k</sup>'').{{sfnm|1a1=Nash|1y=1956}} That is ƒ is an [[Embedding#Differential topology|embedding]] of ''C<sup>k</sup>'' manifolds and for every point ''p'' of ''M'', the [[derivative]] dƒ<sub>''p''</sub> is a [[linear operator|linear map]] from the [[tangent space]] ''T<sub>p</sub>M'' to '''R'''<sup>''n''</sup> which is compatible with the given [[inner product space|inner product]] on ''T<sub>p</sub>M'' and the standard [[scalar product|dot product]] of '''R'''<sup>''n''</sup> in the following sense: : <math>\langle u,v \rangle = df_p(u)\cdot df_p(v)</math> for all vectors ''u'', ''v'' in ''T<sub>p</sub>M''. When {{mvar|n}} is larger than {{math|{{sfrac|1|2}}''m''(''m'' + 1)}}, this is an underdetermined system of [[partial differential equation]]s (PDEs). The Nash embedding theorem is a global theorem in the sense that the whole manifold is embedded into '''R'''<sup>''n''</sup>. A local embedding theorem is much simpler and can be proved using the [[implicit function theorem]] of advanced calculus in a [[Manifold#Charts|coordinate neighborhood]] of the manifold. The proof of the global embedding theorem relies on Nash's implicit function theorem for isometric embeddings. This theorem has been generalized by a number of other authors to abstract contexts, where it is known as [[Nash–Moser theorem]]. The basic idea in the proof of Nash's implicit function theorem is the use of [[Newton's method]] to construct solutions. The standard Newton's method fails to converge when applied to the system; Nash uses smoothing operators defined by [[convolution]] to make the Newton iteration converge: this is Newton's method with postconditioning. The fact that this technique furnishes a solution is in itself an [[existence theorem]] and of independent interest. In other contexts, the [[Kantorovich theorem|convergence of the standard Newton's method]] had earlier been proved by [[Leonid Kantorovitch]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)