Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Natural transformation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Examples== ===Opposite group=== {{details|Opposite group}} Statements such as :"Every group is naturally isomorphic to its [[opposite group]]" abound in modern mathematics. We will now give the precise meaning of this statement as well as its proof. Consider the category <math>\textbf{Grp}</math> of all [[group (mathematics)|group]]s with [[group homomorphism]]s as morphisms. If <math>(G, *)</math> is a group, we define its opposite group <math>(G^\text{op}, {*}^\text{op})</math> as follows: <math>G^\text{op}</math> is the same set as <math>G</math>, and the operation <math>*^\text{op}</math> is defined by <math>a *^\text{op} b = b * a</math>. All multiplications in <math>G^{\text{op}}</math> are thus "turned around". Forming the [[Opposite category|opposite]] group becomes a (covariant) functor from <math>\textbf{Grp}</math> to <math>\textbf{Grp}</math> if we define <math>f^{\text{op}} = f</math> for any group homomorphism <math>f: G \to H</math>. Note that <math>f^\text{op}</math> is indeed a group homomorphism from <math>G^\text{op}</math> to <math>H^\text{op}</math>: :<math>f^\text{op}(a *^\text{op} b) = f(b * a) = f(b) * f(a) = f^\text{op}(a) *^\text{op} f^\text{op}(b).</math> The content of the above statement is: :"The identity functor <math>\text{Id}_{\textbf{Grp}}: \textbf{Grp} \to \textbf{Grp}</math> is naturally isomorphic to the opposite functor <math>{\text{op}}: \textbf{Grp} \to \textbf{Grp}</math>" To prove this, we need to provide isomorphisms <math>\eta_G: G \to G^{\text{op}}</math> for every group <math>G</math>, such that the above diagram commutes. Set <math> \eta_G(a) = a^{-1}</math>. The formulas <math>(a * b)^{-1} = b^{-1}*a^{-1}= a^{-1}*^{\text{op}} b^{-1}</math> and <math> (a^{-1})^{-1} = a</math> show that <math>\eta_G</math> is a group homomorphism with inverse <math> \eta_{G^\text{op}}</math>. To prove the naturality, we start with a group homomorphism <math>f : G \to H</math> and show <math>\eta_H \circ f = f^{\text{op}} \circ \eta_G</math>, i.e. <math> (f(a))^{-1} = f^\text{op}(a^{-1})</math> for all <math>a</math> in <math>G</math>. This is true since <math>f^{\text{op}} = f</math> and every group homomorphism has the property <math>(f(a))^{-1} = f(a^{-1})</math>. ===Modules=== Let <math> \varphi:M \longrightarrow M^{\prime} </math> be an <math>R </math>-module homomorphism of right modules. For every left module <math> N </math> there is a natural map <math> \varphi \otimes N: M \otimes_{R} N \longrightarrow M^{\prime} \otimes_{R} N</math>, form a natural transformation <math>\eta: M \otimes_{R} - \implies M' \otimes_{R} - </math>. For every right module <math> N </math> there is a natural map <math> \eta_{N}: \text{Hom}_{R}(M',N) \longrightarrow \text{Hom}_{R}(M,N) </math> defined by <math> \eta_{N}(f) = f\varphi</math>, form a natural transformation <math> \eta:\text{Hom}_{R}(M',-) \implies \text{Hom}_{R}(M,-) </math>. ===Abelianization=== Given a group <math>G</math>, we can define its [[abelianization]] <math>G^{\text{ab}} = G/</math> [[Commutator subgroup#Definition|<math>[G,G]</math>]]. Let <math>\pi_G: G \to G^{\text{ab}}</math> denote the projection map onto the cosets of <math>[G,G]</math>. This homomorphism is "natural in <math>G</math>", i.e., it defines a natural transformation, which we now check. Let <math>H</math> be a group. For any homomorphism <math>f : G \to H</math>, we have that <math>[G,G]</math> is contained in the kernel of <math>\pi_H \circ f</math>, because any homomorphism into an abelian group kills the commutator subgroup. Then <math>\pi_H \circ f</math> factors through <math>G^{\text{ab}}</math> as <math>f^{\text{ab}} \circ \pi_G = \pi_H \circ f</math> for the unique homomorphism <math>f^{\text{ab}} : G^{\text{ab}} \to H^{\text{ab}}</math>. This makes <math>{\text{ab}} : \textbf{Grp} \to \textbf{Grp}</math> a functor and <math>\pi</math> a natural transformation, but not a natural isomorphism, from the identity functor to <math>\text{ab}</math>. === Hurewicz homomorphism === Functors and natural transformations abound in [[algebraic topology]], with the [[Hurewicz theorem|Hurewicz homomorphisms]] serving as examples. For any [[pointed topological space]] <math>(X,x)</math> and positive integer <math>n</math> there exists a [[group homomorphism]] : <math>h_n \colon \pi_n(X,x) \to H_n(X)</math> from the <math>n</math>-th [[homotopy group]] of <math>(X,x)</math> to the <math>n</math>-th [[Singular homology|homology group]] of <math>X</math>. Both <math>\pi_n</math> and <math>H_n</math> are functors from the category '''Top<sup>*</sup>''' of pointed topological spaces to the category '''Grp''' of groups, and <math>h_n</math> is a natural transformation from <math>\pi_n</math> to <math>H_n</math>. ===Determinant=== {{See also|Determinant#Square matrices over commutative rings}} Given [[Commutative ring|commutative rings]] <math>R</math> and <math>S</math> with a [[ring homomorphism]] <math>f : R \to S</math>, the respective groups of [[Invertible matrix|invertible]] <math>n \times n</math> matrices <math>\text{GL}_n(R)</math> and <math>\text{GL}_n(S)</math> inherit a homomorphism which we denote by <math>\text{GL}_n(f)</math>, obtained by applying <math>f</math> to each matrix entry. Similarly, <math>f</math> restricts to a group homomorphism <math>f^* : R^* \to S^*</math>, where <math>R^*</math> denotes the [[group of units]] of <math>R</math>. In fact, <math>\text{GL}_n</math> and <math>*</math> are functors from the category of commutative rings <math>\textbf{CRing}</math> to <math>\textbf{Grp}</math>. The [[determinant]] on the group <math>\text{GL}_n(R)</math>, denoted by <math>\text{det}_R</math>, is a group homomorphism : <math>\mbox{det}_R \colon \mbox{GL}_n(R) \to R^*</math> which is natural in <math>R</math>: because the determinant is defined by the same formula for every ring, <math>f^* \circ \text{det}_R = \text{det}_S\circ \text{GL}_n(f)</math> holds. This makes the determinant a natural transformation from <math>\text{GL}_n</math> to <math>*</math>. ===Double dual of a vector space=== For example, if <math>K</math> is a [[field (mathematics)|field]], then for every [[vector space]] <math>V</math> over <math>K</math> we have a "natural" [[injective]] [[linear map]] <math>V \to V^{**}</math> from the vector space into its [[double dual]]. These maps are "natural" in the following sense: the double dual operation is a functor, and the maps are the components of a natural transformation from the identity functor to the double dual functor. ===Finite calculus=== For every abelian group <math>G</math>, the set <math>\text{Hom}_\textbf{Set}(\mathbb{Z}, U(G))</math> of functions from the integers to the underlying set of <math>G</math> forms an abelian group <math>V_{\mathbb{Z}}(G)</math> under pointwise addition. (Here <math>U</math> is the standard [[forgetful functor]] <math>U:\textbf{Ab} \to \textbf{Set}</math>.) Given an <math>\textbf{Ab}</math> morphism <math>\varphi: G \to G' </math>, the map <math>V_\mathbb{Z}(\varphi): V_\mathbb{Z}(G) \to V_\mathbb{Z}(G')</math> given by left composing <math>\varphi</math> with the elements of the former is itself a homomorphism of abelian groups; in this way we obtain a functor <math>V_{\mathbb{Z}}: \textbf{Ab} \to \textbf{Ab}</math>. The finite difference operator <math>\Delta_G</math> taking each function <math>f: \mathbb{Z} \to U(G)</math> to <math>\Delta(f): n \mapsto f(n+ 1) - f(n)</math> is a map from <math>V_{\mathbb{Z}}(G)</math> to itself, and the collection <math>\Delta</math> of such maps gives a natural transformation <math>\Delta: V_\mathbb{Z} \to V_\mathbb{Z}</math>. ===Tensor-hom adjunction=== {{further|Tensor-hom adjunction|Adjoint functors}} Consider the [[category of abelian groups|category <math>\textbf{Ab}</math>]] of abelian groups and group homomorphisms. For all abelian groups <math>X</math>, <math>Y</math> and <math>Z</math> we have a group isomorphism : <math>\text{Hom}(X \otimes Y, Z) \to \text{Hom}(X, \text{Hom}(Y, Z))</math>. These isomorphisms are "natural" in the sense that they define a natural transformation between the two involved functors <math>\textbf{Ab}^{\text{op}} \times \textbf{Ab}^{\text{op}} \times \textbf{Ab} \to \textbf{Ab}</math>. (Here "op" is the [[opposite category]] of <math>\textbf{Ab}</math>, not to be confused with the trivial [[opposite group]] functor on <math>\textbf{Ab}</math> !) This is formally the [[tensor-hom adjunction]], and is an archetypal example of a pair of [[adjoint functors]]. Natural transformations arise frequently in conjunction with adjoint functors, and indeed, adjoint functors are defined by a certain natural isomorphism. Additionally, every pair of adjoint functors comes equipped with two natural transformations (generally not isomorphisms) called the ''unit'' and ''counit''.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)