Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Negation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Notation== The negation of a proposition {{mvar|p}} is notated in different ways, in various contexts of discussion and fields of application. The following table documents some of these variants: {| class="wikitable" |- style="background:paleturquoise" ! Notation ! Plain text ! Vocalization |- | style="text-align:center" | <math>\neg p</math> | style="text-align:center" | {{mono|Β¬p}} , {{mono|7p}}<ref>Used as makeshift in early typewriter publications, e.g. {{cite journal | doi=10.1145/990518.990519 | author=Richard E. Ladner | title=The circuit value problem is log space complete for P | journal=ACM SIGACT News | volume=7 | number=101 | pages=18–20 | date=Jan 1975 }}</ref> | Not ''p'' |- | style="text-align:center" | <math>\mathord{\sim} p</math> | style="text-align:center" | {{mono|~p}} | Not ''p'' |- | style="text-align:center" | <math>-p</math> | style="text-align:center" | {{mono|-p}} | Not ''p'' |- | style="text-align:center" | <math>Np</math> | | En ''p'' |- | style="text-align:center" | <math>p'</math> | style="text-align:center" | {{mono|p'}} | {{unbulleted list | ''p'' prime, | ''p'' complement }} |- | style="text-align:center" | <math>\overline{p}</math> | style="text-align:center" | {{mono| Μ p}} | {{unbulleted list | ''p'' bar, | Bar ''p'' }} |- | style="text-align:center" | <math>!p</math> | style="text-align:center" | {{mono|!p}} | {{unbulleted list | Bang ''p'' | Not ''p'' }} |- |} The notation <math>Np</math> is [[Polish notation#Polish notation for logic|Polish notation]]. In [[Set theory#Basic concepts and notation|set theory]], <math>\setminus</math> is also used to indicate 'not in the set of': <math>U \setminus A</math> is the set of all members of {{mvar|U}} that are not members of {{mvar|A}}. Regardless how it is notated or [[List of logic symbols|symbolized]], the negation <math>\neg P</math> can be read as "it is not the case that {{mvar|P}}", "not that {{mvar|P}}", or usually more simply as "not {{mvar|P}}". ===Precedence=== {{See also|Logical connective#Order of precedence}} As a way of reducing the number of necessary parentheses, one may introduce [[precedence rule]]s: ¬ has higher precedence than ∧, ∧ higher than ∨, and ∨ higher than β. So for example, <math>P \vee Q \wedge{\neg R} \rightarrow S</math> is short for <math>(P \vee (Q \wedge (\neg R))) \rightarrow S.</math> Here is a table that shows a commonly used precedence of logical operators.<ref>{{citation|title=Discrete Mathematics Using a Computer|first1=John|last1=O'Donnell|first2=Cordelia|last2=Hall|first3=Rex|last3=Page| publisher=Springer| year=2007| isbn=9781846285981|page=120|url=https://books.google.com/books?id=KKxyQQWQam4C&pg=PA120}}.</ref> {| class="wikitable" style="text-align: center;" !Operator !!Precedence |- | <math>\neg</math> || 1 |- | <math>\land</math> || 2 |- | <math>\lor</math> || 3 |- | <math>\to</math> || 4 |- | <math>\leftrightarrow</math> || 5 |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)