Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Neutron activation analysis
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Variations== NAA can vary according to a number of experimental parameters. The kinetic energy of the neutrons used for irradiation will be a major experimental parameter. The above description is of activation by slow neutrons, slow neutrons are fully moderated within the reactor and have KE <0.5 eV. Medium KE neutrons may also be used for activation, these neutrons have been only partially moderated and have KE of 0.5 eV to 0.5 MeV, and are termed epithermal neutrons. Activation with epithermal neutrons is known as Epithermal NAA (ENAA). High KE neutrons are sometimes used for activation, these neutrons are unmoderated and consist of primary fission neutrons. High KE or fast neutrons have a KE >0.5 MeV. Activation with fast neutrons is termed Fast NAA (FNAA). Another major experimental parameter is whether nuclear decay products (gamma rays or particles) are measured during neutron irradiation ([[Prompt gamma neutron activation analysis|prompt gamma]]), or at some time after irradiation (delayed gamma, DGNAA). PGNAA is generally performed by using a neutron stream tapped off the nuclear reactor via a beam port. Neutron fluxes from beam ports are the order of 10<sup>6</sup> times weaker than inside a reactor. This is somewhat compensated for by placing the detector very close to the sample reducing the loss in sensitivity due to low flux. PGNAA is generally applied to elements with extremely high neutron capture [[Neutron cross-section|cross-sections]]; elements which decay too rapidly to be measured by DGNAA; elements that produce only stable [[isotope]]s; or elements with weak decay gamma ray intensities. PGNAA is characterised by short irradiation times and short decay times, often in the order of seconds and minutes. DGNAA is applicable to the vast majority of elements that form artificial radioisotopes. DG analyses are often performed over days, weeks or even months. This improves sensitivity for long-lived radionuclides as it allows short-lived radionuclide to decay, effectively eliminating interference. DGNAA is characterised by long irradiation times and long decay times, often in the order of hours, weeks or longer. [[File:Neutronactivationscheme.png|center|thumb|500px|Nuclear processes occurring when cobalt is irradiated with neutrons]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)