Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Noether's theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Informal statement of the theorem == All fine technical points aside, Noether's theorem can be stated informally as: {{blockquote|If a system has a continuous symmetry property, then there are corresponding quantities whose values are conserved in time.<ref>{{cite book |author=Thompson, W.J. |title=Angular Momentum: an illustrated guide to rotational symmetries for physical systems |publisher=Wiley |year=1994 |isbn=0-471-55264-X |volume=1 |page=5 |url=https://books.google.com/books?id=O25fXV4z0B0C&pg=PA5}}</ref>}} A more sophisticated version of the theorem involving fields states that: {{blockquote|To every continuous [[Symmetry in physics|symmetry]] generated by local actions there corresponds a [[conserved current]] and vice versa.}} The word "symmetry" in the above statement refers more precisely to the [[general covariance|covariance]] of the form that a physical law takes with respect to a one-dimensional [[Lie group]] of transformations satisfying certain technical criteria. The [[conservation law]] of a [[physical quantity]] is usually expressed as a [[continuity equation]]. The formal proof of the theorem utilizes the condition of invariance to derive an expression for a current associated with a conserved physical quantity. In modern terminology, the conserved quantity is called the ''Noether charge'', while the flow carrying that charge is called the ''Noether current''. The Noether current is defined [[up to]] a [[solenoidal]] (divergenceless) vector field. In the context of gravitation, [[Felix Klein]]'s statement of Noether's theorem for action ''I'' stipulates for the invariants:<ref>Nina Byers (1998) [http://cwp.library.ucla.edu/articles/noether.asg/noether.html "E. Noether's Discovery of the Deep Connection Between Symmetries and Conservation Laws"]. In Proceedings of a Symposium on the Heritage of Emmy Noether, held on 2β4 December 1996, at the Bar-Ilan University, Israel, Appendix B.</ref> {{blockquote|If an integral I is invariant under a continuous group ''G''<sub>''Ο''</sub> with ''Ο'' parameters, then ''Ο'' linearly independent combinations of the Lagrangian expressions are divergences.}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)