Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Normal order
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Bosons== [[Bosons]] are particles which satisfy [[Bose–Einstein statistics]]. We will now examine the normal ordering of bosonic creation and annihilation operator products. ===Single bosons=== If we start with only one type of boson there are two operators of interest: * <math>\hat{b}^\dagger</math>: the boson's creation operator. * <math>\hat{b}</math>: the boson's annihilation operator. These satisfy the [[commutator]] relationship :<math>\left[\hat{b}^\dagger, \hat{b}^\dagger \right]_- = 0</math> :<math>\left[\hat{b}, \hat{b} \right]_- = 0</math> :<math>\left[\hat{b}, \hat{b}^\dagger \right]_- = 1</math> where <math>\left[ A, B \right]_- \equiv AB - BA</math> denotes the [[commutator]]. We may rewrite the last one as: <math>\hat{b}\, \hat{b}^\dagger = \hat{b}^\dagger\, \hat{b} + 1.</math> ====Examples==== 1. We'll consider the simplest case first. This is the normal ordering of <math>\hat{b}^\dagger \hat{b}</math>: :<math> {:\,}\hat{b}^\dagger \, \hat{b}{\,:} = \hat{b}^\dagger \, \hat{b}. </math> The expression <math>\hat{b}^\dagger \, \hat{b}</math> has not been changed because it is ''already'' in normal order - the creation operator <math>(\hat{b}^\dagger)</math> is already to the left of the annihilation operator <math>(\hat{b})</math>. 2. A more interesting example is the normal ordering of <math>\hat{b} \, \hat{b}^\dagger </math>: :<math> {:\,}\hat{b} \, \hat{b}^\dagger{\,:} = \hat{b}^\dagger \, \hat{b}. </math> Here the normal ordering operation has ''reordered'' the terms by placing <math>\hat{b}^\dagger</math> to the left of <math>\hat{b}</math>. These two results can be combined with the commutation relation obeyed by <math>\hat{b}</math> and <math>\hat{b}^\dagger</math> to get :<math> \hat{b} \, \hat{b}^\dagger = \hat{b}^\dagger \, \hat{b} + 1 = {:\,}\hat{b} \, \hat{b}^\dagger{\,:} \; + 1.</math> or :<math> \hat{b} \, \hat{b}^\dagger - {:\,}\hat{b} \, \hat{b}^\dagger{\,:} = 1.</math> This equation is used in defining the contractions used in [[Wick's theorem]]. 3. An example with multiple operators is: :<math> {:\,}\hat{b}^\dagger \, \hat{b} \, \hat{b} \, \hat{b}^\dagger \, \hat{b} \, \hat{b}^\dagger \, \hat{b}{\,:} = \hat{b}^\dagger \, \hat{b}^\dagger \, \hat{b}^\dagger \, \hat{b} \, \hat{b} \, \hat{b} \, \hat{b} = (\hat{b}^\dagger)^3 \, \hat{b}^4.</math> 4. A simple example shows that normal ordering cannot be extended by linearity from the monomials to all operators in a self-consistent way. Assume that we can apply the commutation relations to obtain: :<math> {:\,}\hat{b} \hat{b}^\dagger{\,:} = {:\,}1 + \hat{b}^\dagger \hat{b}{\,:}.</math> Then, by linearity, : <math>{:\,}1 + \hat{b}^\dagger \hat{b}{\,:} = {:\,}1{\,:} + {:\,}\hat{b}^\dagger \hat{b}{\,:} = 1 + \hat{b}^\dagger \hat{b} \ne \hat{b}^\dagger \hat{b}={:\,}\hat{b} \hat{b}^\dagger{\,:},</math> a contradiction. The implication is that normal ordering is not a linear function on operators, but on the [[free algebra]] generated by the operators, i.e. the operators do not satisfy the [[canonical commutation relations]] while inside the normal ordering (or any other ordering operator like [[time-ordering]], etc). ===Multiple bosons=== If we now consider <math>N</math> different bosons there are <math>2 N</math> operators: * <math>\hat{b}_i^\dagger</math>: the <math>i^{th}</math> boson's creation operator. * <math>\hat{b}_i</math>: the <math>i^{th}</math> boson's annihilation operator. Here <math>i = 1,\ldots,N</math>. These satisfy the commutation relations: :<math>\left[\hat{b}_i^\dagger, \hat{b}_j^\dagger \right]_- = 0 </math> :<math>\left[\hat{b}_i, \hat{b}_j \right]_- = 0 </math> :<math>\left[\hat{b}_i, \hat{b}_j^\dagger \right]_- = \delta_{ij} </math> where <math>i,j = 1,\ldots,N</math> and <math>\delta_{ij}</math> denotes the [[Kronecker delta]]. These may be rewritten as: :<math>\hat{b}_i^\dagger \, \hat{b}_j^\dagger = \hat{b}_j^\dagger \, \hat{b}_i^\dagger </math> :<math>\hat{b}_i \, \hat{b}_j = \hat{b}_j \, \hat{b}_i </math> :<math>\hat{b}_i \,\hat{b}_j^\dagger = \hat{b}_j^\dagger \,\hat{b}_i + \delta_{ij}.</math> ====Examples==== 1. For two different bosons (<math>N=2</math>) we have :<math> : \hat{b}_1^\dagger \,\hat{b}_2 : \,= \hat{b}_1^\dagger \,\hat{b}_2 </math> :<math> : \hat{b}_2 \, \hat{b}_1^\dagger : \,= \hat{b}_1^\dagger \,\hat{b}_2 </math> 2. For three different bosons (<math>N=3</math>) we have :<math> : \hat{b}_1^\dagger \,\hat{b}_2 \,\hat{b}_3 : \,= \hat{b}_1^\dagger \,\hat{b}_2 \,\hat{b}_3</math> Notice that since (by the commutation relations) <math>\hat{b}_2 \,\hat{b}_3 = \hat{b}_3 \,\hat{b}_2</math> the order in which we write the annihilation operators does not matter. :<math> : \hat{b}_2 \, \hat{b}_1^\dagger \, \hat{b}_3 : \,= \hat{b}_1^\dagger \,\hat{b}_2 \, \hat{b}_3 </math> :<math> : \hat{b}_3 \hat{b}_2 \, \hat{b}_1^\dagger : \,= \hat{b}_1^\dagger \,\hat{b}_2 \, \hat{b}_3 </math> ===Bosonic operator functions=== Normal ordering of bosonic operator functions <math>f(\hat n)</math>, with occupation number operator <math>\hat n=\hat b\vphantom{\hat n}^\dagger \hat b</math>, can be accomplished using [[Factorial power|(falling) factorial powers]] <math>\hat n^{\underline{k}}=\hat n(\hat n-1)\cdots(\hat n-k+1)</math> and [[Newton series]] instead of [[Taylor series]]: It is easy to show <ref name="Hucht">{{cite journal | last1=König | first1=Jürgen | last2=Hucht | first2=Alfred | title=Newton series expansion of bosonic operator functions | journal=SciPost Physics | publisher=Stichting SciPost | volume=10 | issue=1 | date=2021-01-13 | issn=2542-4653 | doi=10.21468/scipostphys.10.1.007 | page=007| arxiv=2008.11139 | bibcode=2021ScPP...10....7K | s2cid=221293056 | doi-access=free }}</ref> that factorial powers <math>\hat n^{\underline{k}}</math> are equal to normal-ordered (raw) [[Exponentiation|powers]] <math>\hat n^{k}</math> and are therefore normal ordered by construction, : <math> \hat{n}^{\underline{k}} = \hat b\vphantom{\hat n}^{\dagger k} \hat b\vphantom{\hat n}^k = {:\,}\hat n^k{\,:}, </math> such that the Newton series expansion : <math> \tilde f(\hat n) = \sum_{k=0}^\infty \Delta_n^k \tilde f(0) \, \frac{\hat n^{\underline{k}}}{k!} </math> of an operator function <math>\tilde f(\hat n)</math>, with <math>k</math>-th [[forward difference]] <math>\Delta_n^k \tilde f(0)</math> at <math>n=0</math>, is always normal ordered. Here, the [[Second_quantization#Action_on_Fock_states|eigenvalue equation]] <math>\hat n |n\rangle = n |n\rangle</math> relates <math>\hat n</math> and <math>n</math>. As a consequence, the normal-ordered Taylor series of an arbitrary function <math>f(\hat n)</math> is equal to the Newton series of an associated function <math>\tilde f(\hat n)</math>, fulfilling : <math> \tilde f(\hat n) = {:\,} f(\hat n) {\,:}, </math> if the series coefficients of the Taylor series of <math>f(x)</math>, with continuous <math>x</math>, match the coefficients of the Newton series of <math>\tilde f(n)</math>, with integer <math>n</math>, : <math> \begin{align} f(x) &= \sum_{k=0}^\infty F_k \, \frac{x^k }{k!}, \\ \tilde f(n) &= \sum_{k=0}^\infty F_k \, \frac{n^{\underline{k}}}{k!}, \\ F_k &= \partial_x^k f(0) = \Delta_n^k \tilde f(0), \end{align} </math> with <math>k</math>-th [[partial derivative]] <math>\partial_x^k f(0)</math> at <math>x=0</math>. The functions <math>f</math> and <math>\tilde f</math> are related through the so-called '''[[normal-order transform]]''' <math>\mathcal N[f]</math> according to : <math> \begin{align} \tilde f(n) &= \mathcal N_x[f(x)](n) \\ &= \frac{1}{\Gamma(-n)} \int_{-\infty}^0 \mathrm d x \, e^x \, f(x) \, (-x)^{-(n+1)} \\ &= \frac{1}{\Gamma(-n)}\mathcal M_{-x}[e^{x} f(x)](-n), \end{align} </math> which can be expressed in terms of the [[Mellin transform]] <math>\mathcal M</math>, see <ref name="Hucht"/> for details.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)