Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Open and closed maps
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Competing definitions=== There are two different competing, but closely related, definitions of "{{em|open map}}" that are widely used, where both of these definitions can be summarized as: "it is a map that sends open sets to open sets." The following terminology is sometimes used to distinguish between the two definitions. A map <math>f : X \to Y</math> is called a * "'''{{em|Strongly open map}}'''" if whenever <math>U</math> is an [[Open set|open subset]] of the domain <math>X</math> then <math>f(U)</math> is an open subset of <math>f</math>'s [[codomain]] <math>Y.</math> * "'''{{em|{{visible anchor|Relatively open map}}}}'''" if whenever <math>U</math> is an open subset of the domain <math>X</math> then <math>f(U)</math> is an open subset of <math>f</math>'s [[Image (mathematics)|image]] <math>\operatorname{Im} f := f(X),</math> where as usual, this set is endowed with the [[subspace topology]] induced on it by <math>f</math>'s codomain <math>Y.</math>{{sfn|Narici|Beckenstein|2011|pp=225-273}} Every strongly open map is a relatively open map. However, these definitions are not equivalent in general. :'''Warning''': Many authors define "open map" to mean "{{em|relatively}} open map" (for example, The Encyclopedia of Mathematics) while others define "open map" to mean "{{em|strongly}} open map". In general, these definitions are {{em|not}} equivalent so it is thus advisable to always check what definition of "open map" an author is using. A [[Surjective function|surjective]] map is relatively open if and only if it is strongly open; so for this important special case the definitions are equivalent. More generally, a map <math>f : X \to Y</math> is relatively open if and only if the [[Surjective function|surjection]] <math>f : X \to f(X)</math> is a strongly open map. Because <math>X</math> is always an open subset of <math>X,</math> the image <math>f(X) = \operatorname{Im} f</math> of a strongly open map <math>f : X \to Y</math> must be an open subset of its codomain <math>Y.</math> In fact, a relatively open map is a strongly open map if and only if its image is an open subset of its codomain. In summary, :A map is strongly open if and only if it is relatively open and its image is an open subset of its codomain. By using this characterization, it is often straightforward to apply results involving one of these two definitions of "open map" to a situation involving the other definition. The discussion above will also apply to closed maps if each instance of the word "open" is replaced with the word "closed".
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)