Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Operator norm
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Examples == Every real <math>m</math>-by-<math>n</math> [[matrix (mathematics)|matrix]] corresponds to a linear map from <math>\R^n</math> to <math>\R^m.</math> Each pair of the plethora of (vector) [[norm (mathematics)|norms]] applicable to real vector spaces induces an operator norm for all <math>m</math>-by-<math>n</math> matrices of real numbers; these induced norms form a subset of [[matrix norm]]s. If we specifically choose the [[Euclidean norm]] on both <math>\R^n</math> and <math>\R^m,</math> then the matrix norm given to a matrix <math>A</math> is the [[square root]] of the largest [[eigenvalue]] of the matrix <math>A^{*} A</math> (where <math>A^{*}</math> denotes the [[conjugate transpose]] of <math>A</math>).<ref>{{Cite web|url=https://mathworld.wolfram.com/OperatorNorm.html|title=Operator Norm|last=Weisstein|first=Eric W.|authorlink = Eric W. Weisstein|website=mathworld.wolfram.com|language=en|access-date=2020-03-14}}</ref> This is equivalent to assigning the largest [[singular value]] of <math>A.</math> Passing to a typical infinite-dimensional example, consider the [[sequence space]] <math>\ell^2,</math> which is an [[Lp space|L<sup>''p''</sup> space]], defined by <math display="block">\ell^2 = \left\{ (a_n)_{n \geq 1} : \; a_n \in \Complex, \; \sum_n |a_n|^2 < \infty \right\}.</math> This can be viewed as an infinite-dimensional analogue of the [[Euclidean space]] <math>\Complex^n.</math> Now consider a bounded sequence <math>s_{\bull} = \left(s_n\right)_{n=1}^\infty.</math> The sequence <math>s_{\bull}</math> is an element of the space <math>\ell^\infty,</math> with a norm given by <math display="block">\left\|s_{\bull}\right\|_\infty = \sup _n \left|s_n\right|.</math> Define an operator <math>T_s</math> by pointwise multiplication: <math display="block">\left(a_n\right)_{n=1}^{\infty} \;\stackrel{T_s}{\mapsto}\;\ \left(s_n \cdot a_n\right)_{n=1}^{\infty}.</math> The operator <math>T_s</math> is bounded with operator norm <math display="block">\left\|T_s\right\|_\text{op} = \left\|s_{\bull}\right\|_\infty.</math> This discussion extends directly to the case where <math>\ell^2</math> is replaced by a general <math>L^p</math> space with <math>p > 1</math> and <math>\ell^\infty</math> replaced by <math>L^\infty.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)