Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Optical isolator
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Polarization dependent isolator== [[File:Faraday isolator.svg|thumbnail|right|300px|Figure 2: Faraday isolator allows the transmission of light in only one direction. It is made of three parts, an input polarizer, a Faraday rotator and an analyzer.]] The polarization dependent isolator, or '''Faraday isolator''', is made of three parts, an input polarizer (polarized vertically), a Faraday rotator, and an output polarizer, called an analyzer (polarized at 45°). Light traveling in the forward direction becomes polarized vertically by the input polarizer. The Faraday rotator will rotate the polarization by 45°. The analyzer then enables the light to be transmitted through the isolator. Light traveling in the backward direction becomes polarized at 45° by the analyzer. The Faraday rotator will again rotate the polarization by 45°. This means the light is polarized horizontally (the direction of rotation is not sensitive to the direction of propagation). Since the polarizer is vertically aligned, the light will be extinguished. Figure 2 shows a Faraday rotator with an input polarizer, and an output analyzer. For a polarization dependent isolator, the angle between the polarizer and the analyzer, <math>\beta</math>, is set to 45°. The Faraday rotator is chosen to give a 45° rotation. Polarization dependent isolators are typically used in free space optical systems. This is because the polarization of the source is typically maintained by the system. In optical fibre systems, the polarization direction is typically dispersed in non polarization maintaining systems. Hence the angle of polarization will lead to a loss.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)