Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Orthogonal complement
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== General bilinear forms == Let <math>V</math> be a vector space over a [[Field (mathematics)|field]] <math>\mathbb{F}</math> equipped with a [[bilinear form]] <math>B.</math> We define <math>\mathbf{u}</math> to be left-orthogonal to <math>\mathbf{v}</math>, and <math>\mathbf{v}</math> to be right-orthogonal to <math>\mathbf{u}</math>, when <math>B(\mathbf{u},\mathbf{v}) = 0.</math> For a subset <math>W</math> of <math>V,</math> define the left-orthogonal complement <math>W^\perp</math> to be <math display="block">W^\perp = \left\{ \mathbf{x} \in V : B(\mathbf{x}, \mathbf{y}) = 0 \ \ \forall \ \mathbf{y} \in W \right\}.</math> There is a corresponding definition of the right-orthogonal complement. For a [[reflexive bilinear form]], where <math>B(\mathbf{u},\mathbf{v}) = 0 \implies B(\mathbf{v},\mathbf{u}) = 0 \ \ \forall \ \mathbf{u} , \mathbf{v} \in V</math>, the left and right complements coincide. This will be the case if <math>B</math> is a [[Symmetric bilinear form|symmetric]] or an [[Bilinear form#Symmetric, skew-symmetric and alternating forms|alternating form]]. The definition extends to a bilinear form on a [[free module]] over a [[commutative ring]], and to a [[sesquilinear form]] extended to include any free module over a commutative ring with [[Conjugate element (field theory)|conjugation]].<ref>Adkins & Weintraub (1992) p.359</ref> === Properties === * An orthogonal complement is a subspace of <math>V</math>; * If <math>X \subseteq Y</math> then <math>X^\perp \supseteq Y^\perp</math>; * The [[Radical of a quadratic space|radical]] <math>V^\perp</math> of <math>V</math> is a subspace of every orthogonal complement; * <math>W \subseteq (W^\perp)^\perp</math>; * If <math>B</math> is [[non-degenerate]] and <math>V</math> is finite-dimensional, then <math>\dim(W)+\dim (W^\perp)=\dim (V)</math>. * If <math>L_1, \ldots, L_r</math> are subspaces of a finite-dimensional space <math>V</math> and <math>L_* = L_1 \cap \cdots \cap L_r,</math> then <math>L_*^\perp = L_1^\perp + \cdots + L_r^\perp</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)