Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Palindromic number
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Decimal palindromic numbers== All numbers with one digit are palindromic, so in [[Decimal|base 10]] there are ten palindromic numbers with one digit: :{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. There are 9 palindromic numbers with two digits: :{11, 22, 33, 44, 55, 66, 77, 88, 99}. All palindromic numbers with an even number of digits are divisible by [[11 (number)|11]].<ref>{{cite web |title=The Prime Glossary: palindromic prime |url=https://t5k.org/glossary/page.php?sort=PalindromicPrime |website=[[PrimePages]] |access-date=11 July 2023}}</ref> There are 90 palindromic numbers with three digits (Using the [[rule of product]]: 9 choices for the first digit - which determines the third digit as well - multiplied by 10 choices for the second digit): :{101, 111, 121, 131, 141, 151, 161, 171, 181, 191, ..., 909, 919, 929, 939, 949, 959, 969, 979, 989, 999} There are likewise 90 palindromic numbers with four digits (again, 9 choices for the first digit multiplied by ten choices for the second digit. The other two digits are determined by the choice of the first two): :{1001, 1111, 1221, 1331, 1441, 1551, 1661, 1771, 1881, 1991, ..., 9009, 9119, 9229, 9339, 9449, 9559, 9669, 9779, 9889, 9999}, so there are 199 palindromic numbers smaller than 10<sup>4</sup>. There are 1099 palindromic numbers smaller than 10<sup>5</sup> and for other exponents of 10<sup>n</sup> we have: 1999, 10999, 19999, 109999, 199999, 1099999, ... {{OEIS|id=A070199}}. The number of palindromic numbers which have some other property are listed below: {| class="wikitable" |- ! ! 10<sup>1</sup> ! 10<sup>2</sup> ! 10<sup>3</sup> ! 10<sup>4</sup> ! 10<sup>5</sup> ! 10<sup>6</sup> ! 10<sup>7</sup> ! 10<sup>8</sup> ! 10<sup>9</sup> ! 10<sup>10</sup> |- ! style="font-weight:normal; text-align:left" | ''n'' [[Natural number|natural]] | 10 | 19 | 109 | 199 | 1099 | 1999 | 10999 | 19999 | 109999 | 199999 |- ! style="font-weight:normal; text-align:left" | ''n'' [[even and odd numbers|even]] | 5 | 9 | 49 | 89 | 489 | 889 | 4889 | 8889 | 48889 | 88889 |- ! style="font-weight:normal; text-align:left" | ''n'' [[odd number|odd]] | 5 | 10 | 60 | 110 | 610 | 1110 | 6110 | 11110 | 61110 | 111110 |- ! style="font-weight:normal; text-align:left" | ''n'' [[square number|square]] | colspan="2" | 4 | colspan="2" | 7 | 14 | 15 | colspan="2" | 20 | colspan="2" | 31 |- ! style="font-weight:normal; text-align:left" | ''n'' [[Cube (algebra)|cube]] | colspan="2" | 3 | 4 | colspan="3" | 5 | colspan="3" | 7 | 8 |- ! style="font-weight:normal; text-align:left" | ''n'' [[prime number|prime]] | 4 | 5 | colspan="2" | 20 | colspan="2" | 113 | colspan="2" | 781 | colspan="2" | 5953 |- ! style="font-weight:normal; text-align:left" | ''n'' [[square-free integer|squarefree]] | 6 | 12 | 67 | 120 | 675 | 1200 | 6821 | 12160 | + | + |- ! style="font-weight:normal; text-align:left" | ''n'' non-squarefree ([[Möbius function|μ(''n'')]]=0) | 4 | 7 | 42 | 79 | 424 | 799 | 4178 | 7839 | + | + |- ! style="font-weight:normal; text-align:left" | ''n'' square with prime root<ref>{{OEIS|A065379}} The next example is 19 digits - 900075181570009.</ref> | colspan="1" | 2 | colspan="2" | 3 | colspan="6" | 5 |- ! style="font-weight:normal; text-align:left" | ''n'' with an even number of distinct [[prime factor]]s (μ(''n'')=1) | 2 | 6 | 35 | 56 | 324 | 583 | 3383 | 6093 | + | + |- ! style="font-weight:normal; text-align:left" | ''n'' with an odd number of distinct prime factors (μ(''n'')=-1) | 4 | 6 | 32 | 64 | 351 | 617 | 3438 | 6067 | + | + |- ! style="font-weight:normal; text-align:left" | ''n'' even with an odd number of prime factors | 1 | 2 | 9 | 21 | 100 | 180 | 1010 | 6067 | + | + |- ! style="font-weight:normal; text-align:left" | ''n'' even with an odd number of distinct prime factors | 3 | 4 | 21 | 49 | 268 | 482 | 2486 | 4452 | + | + |- ! style="font-weight:normal; text-align:left" | ''n'' odd with an odd number of prime factors | 3 | 4 | 23 | 43 | 251 | 437 | 2428 | 4315 | + | + |- ! style="font-weight:normal; text-align:left" | ''n'' odd with an odd number of distinct prime factors | 4 | 5 | 28 | 56 | 317 | 566 | 3070 | 5607 | + | + |- ! style="font-weight:normal; text-align:left" | ''n'' even squarefree with an even number of (distinct) prime factors | 1 | 2 | 11 | 15 | 98 | 171 | 991 | 1782 | + | + |- ! style="font-weight:normal; text-align:left" | ''n'' odd squarefree with an even number of (distinct) prime factors | 1 | 4 | 24 | 41 | 226 | 412 | 2392 | 4221 | + | + |- ! style="font-weight:normal; text-align:left" | ''n'' odd with exactly 2 prime factors | 1 | 4 | 25 | 39 | 205 | 303 | 1768 | 2403 | + | + |- ! style="font-weight:normal; text-align:left" | ''n'' even with exactly 2 prime factors | 2 | 3 | colspan="2" | 11 | colspan="2" | 64 | colspan="2" | 413 | + | + |- ! style="font-weight:normal; text-align:left" | ''n'' even with exactly 3 prime factors | 1 | 3 | 14 | 24 | 122 | 179 | 1056 | 1400 | + | + |- ! style="font-weight:normal; text-align:left" | ''n'' even with exactly 3 distinct prime factors | 0 | 1 | 18 | 44 | 250 | 390 | 2001 | 2814 | + | + |- ! style="font-weight:normal; text-align:left" | ''n'' odd with exactly 3 prime factors | 0 | 1 | 12 | 34 | 173 | 348 | 1762 | 3292 | + | + |- ! style="font-weight:normal; text-align:left" | ''n'' [[Carmichael number]] | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |- ! style="font-weight:normal; text-align:left" | ''n'' for which [[Divisor function|σ(''n'')]] is palindromic | 6 | 10 | 47 | 114 | 688 | 1417 | 5683 | + | + | + |} ===Perfect powers=== There are many palindromic [[perfect power]]s ''n''<sup>''k''</sup>, where ''n'' is a natural number and ''k'' is 2, 3 or 4. * Palindromic [[Square number|squares]]: 0, 1, 4, 9, 121, 484, 676, 10201, 12321, 14641, 40804, 44944, ... {{OEIS|id=A002779}} * Palindromic [[Cube (algebra)|cubes]]: 0, 1, 8, 343, 1331, 1030301, 1367631, 1003003001, ... {{OEIS|id=A002781}} * Palindromic [[fourth power]]s: 0, 1, 14641, 104060401, 1004006004001, ... {{OEIS|id=A186080}} The first nine terms of the sequence 1<sup>2</sup>, 11<sup>2</sup>, 111<sup>2</sup>, 1111<sup>2</sup>, ... form the palindromes 1, 121, 12321, 1234321, ... {{OEIS|id=A002477}} The only known non-palindromic number whose cube is a palindrome is 2201, and it is a conjecture the fourth root of all the palindrome fourth powers are a palindrome with 100000...000001 (10<sup>n</sup> + 1). [[Gustavus Simmons]] conjectured there are no palindromes of form ''n''<sup>''k''</sup> for ''k'' > 4 (and ''n'' > 1).<ref>Murray S. Klamkin (1990), ''Problems in applied mathematics: selections from SIAM review'', [https://books.google.com/books?id=WI9ZGl3M8bYC&pg=PA520 p. 520].</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)