Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Parallel coordinates
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Higher dimensions== On the plane with an XY Cartesian coordinate system, adding more [[dimensions]] in parallel coordinates (often abbreviated ||-coords, PCP, or PC) involves adding more axes. The value of parallel coordinates is that certain geometrical properties in high dimensions transform into easily seen 2D patterns. For example, a set of points on a line in ''n''-space transforms to a set of [[polyline]]s in parallel coordinates all intersecting at ''n'' − 1 points. For ''n'' = 2 this yields a point-line duality pointing out why the mathematical foundations of parallel coordinates are developed in the [[Projective space|projective]] rather than [[Euclidian space|euclidean]] space. A pair of lines intersects at a unique point which has two coordinates and, therefore, can correspond to a unique line which is also specified by two parameters (or two points). By contrast, more than two points are required to specify a curve and also a pair of curves may not have a unique intersection. Hence by using curves in parallel coordinates instead of lines, the point line duality is lost together with all the other properties of projective geometry, and the known nice higher-dimensional patterns corresponding to (hyper)planes, curves, several smooth (hyper)surfaces, proximities, convexity and recently non-orientability.<ref name="pc2">{{cite book |first=Alfred |last=Inselberg |title=Parallel Coordinates: VISUAL Multidimensional Geometry and its Applications |publisher=Springer |year=2009 |isbn=978-0387215075 }}</ref> The goal is to map n-dimensional relations into 2D patterns. Hence, parallel coordinates is not a point-to-point mapping but rather a ''n''D subset to 2D subset mapping, there is no loss of information. Note: even a point in nD is not mapped into a point in 2D, but to a polygonal lineβa subset of 2D.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)