Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Parallelepiped
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Volume== [[File:Parallelepiped-bf.svg|thumb|upright=1.2|Parallelepiped, generated by three vectors]] A parallelepiped is a [[Prism (geometry)|prism]] with a [[parallelogram]] as base. Hence the volume <math>V</math> of a parallelepiped is the product of the base area <math>B</math> and the height <math>h</math> (see diagram). With *<math>B = \left|\mathbf a\right| \cdot \left|\mathbf b\right| \cdot \sin \gamma = \left|\mathbf a \times \mathbf b\right|</math> (where <math>\gamma</math> is the angle between vectors <math>\mathbf a</math> and <math>\mathbf b</math>), and *<math>h = \left|\mathbf c\right| \cdot \left|\cos \theta\right|</math> (where <math>\theta</math> is the angle between vector <math>\mathbf c</math> and the [[Normal (geometry)|normal]] to the base), one gets: <math display="block">V = B\cdot h = \left(\left|\mathbf a\right| \left|\mathbf b\right| \sin \gamma\right) \cdot \left|\mathbf c\right| \left|\cos \theta\right| = \left|\mathbf a \times \mathbf b\right| \left|\mathbf c\right| \left|\cos \theta\right| = \left|\left(\mathbf{a} \times \mathbf{b}\right) \cdot \mathbf{c}\right|.</math> The mixed product of three vectors is called [[triple product]]. It can be described by a [[determinant]]. Hence for <math>\mathbf a=(a_1,a_2,a_3)^\mathsf{T}, ~\mathbf b=(b_1,b_2,b_3)^\mathsf{T}, ~\mathbf c=(c_1,c_2,c_3)^\mathsf{T},</math> the volume is: {{NumBlk||<math display="block">V = \left| \det \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} \right| . </math>|{{EquationRef|V1}}}} Another way to prove '''({{EquationNote|V1}})''' is to use the scalar component in the direction of <math>\mathbf a\times\mathbf b</math> of vector <math>\mathbf c</math>: <math display="block">\begin{align} V = \left|\mathbf a\times\mathbf b\right| \left|\operatorname{scal}_{\mathbf a \times \mathbf b} \mathbf c\right| = \left|\mathbf a\times\mathbf b\right| \frac{\left|\left(\mathbf a\times \mathbf b\right) \cdot \mathbf c\right|}{\left|\mathbf a\times \mathbf b\right|} = \left|\left(\mathbf a\times \mathbf b\right) \cdot \mathbf c\right|. \end{align}</math> The result follows. An alternative representation of the volume uses geometric properties (angles and edge lengths) only: {{NumBlk||<math display="block">V = abc\sqrt{1+2\cos(\alpha)\cos(\beta)\cos(\gamma)-\cos^2(\alpha)-\cos^2(\beta)-\cos^2(\gamma)},</math>|{{EquationRef|V2}}}} where <math>\alpha = \angle(\mathbf b, \mathbf c)</math>, <math>\beta = \angle(\mathbf a,\mathbf c)</math>, <math>\gamma = \angle(\mathbf a,\mathbf b) </math>, and <math>a,b,c </math> are the edge lengths. {{math proof | title = Proof of ({{EquationNote|V2}}) | proof = The proof of '''({{EquationNote|V2}})''' uses [[Determinant#Properties of the determinant|properties of a determinant]] and the [[dot product#geometric definition|geometric interpretation of the dot product]]: Let <math>M</math> be the 3Γ3-matrix, whose columns are the vectors <math>\mathbf a, \mathbf b, \mathbf c</math> (see above). Then the following is true: <math display="block">\begin{align} V^2 &= \left(\det M\right)^2 = \det M \det M = \det M^\mathsf{T} \det M = \det (M^\mathsf{T} M) \\ &= \det \begin{bmatrix} \mathbf a\cdot \mathbf a & \mathbf a\cdot \mathbf b & \mathbf a\cdot \mathbf c \\ \mathbf b\cdot \mathbf a & \mathbf b\cdot \mathbf b & \mathbf b\cdot \mathbf c \\ \mathbf c\cdot \mathbf a & \mathbf c\cdot \mathbf b & \mathbf c\cdot \mathbf c \end{bmatrix} \\ &=\ a^2\left(b^2c^2 - b^2c^2\cos^2(\alpha)\right) \\ &\quad-ab\cos(\gamma)\left(ab\cos(\gamma)c^2-ac\cos(\beta)\;bc\cos(\alpha)\right) \\ &\quad+ac\cos(\beta)\left(ab\cos(\gamma)bc\cos(\alpha)-ac\cos(\beta)b^2\right) \\ &=\ a^2b^2c^2-a^2b^2c^2\cos^2(\alpha) \\ &\quad-a^2b^2c^2\cos^2(\gamma)+a^2b^2c^2\cos(\alpha)\cos(\beta)\cos(\gamma) \\ &\quad+a^2b^2c^2\cos(\alpha)\cos(\beta)\cos(\gamma)-a^2b^2c^2\cos^2(\beta) \\ &=\ a^2b^2c^2\left(1-\cos^2(\alpha)-\cos^2(\gamma)+\cos(\alpha)\cos(\beta)\cos(\gamma)+\cos(\alpha)\cos(\beta)\cos(\gamma)-\cos^2(\beta)\right) \\ &=\ a^2b^2c^2\;\left(1+2\cos(\alpha)\cos(\beta)\cos(\gamma)-\cos^2(\alpha)-\cos^2(\beta)-\cos^2(\gamma)\right). \end{align}</math> (The last steps use <math>\mathbf a \cdot \mathbf a=a^2</math>, ..., <math>\mathbf a\cdot \mathbf b=ab\cos\gamma</math>, <math>\mathbf a \cdot \mathbf c = ac\cos\beta</math>, <math>\mathbf b\cdot \mathbf c=bc\cos\alpha</math>, ...)}} ;Corresponding tetrahedron The volume of any [[tetrahedron]] that shares three converging edges of a parallelepiped is equal to one sixth of the volume of that parallelepiped (see [[Tetrahedron#Volume|proof]]).
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)